
An Analytical Approach for Predicting QoS
of Web Services Choreographies

∗

Alfredo Goldman, Yanik Ngoko
Institute of Mathematic and Statistic

University of São Paulo
São Paulo, Brasil

{gold, yanik}@ime.usp.br

Dejan Milojicic
Hewlett Packard Laboratories

Palo Alto, CA USA
dejan.milojicic@hp.com

ABSTRACT

Given a Web Services Composition, we deal with the pre-
diction of the mean service response time that can be ex-
pected from a user request that is serviced. This challenge
is a key issue in the design of middleware, managing Web
Services Composition. We focus on complex services com-
position that can be described as BPMN choreographies of
services. Our main contribution is a mathematical program-
ming based approach for the prediction of the response time
of Web Services Compositions. This new approach occurs
through the automatic generation of a linear program whose
number of variables and constraints is polynomial in the
number of elements used to represent the Service Composi-
tion. The equations of the linear program are based on well
known aggregation rules for service composition and a new
modeling that we introduced for handling communication
within Web Services.

Categories and Subject Descriptors

H.4 [Information Systems applications]: Workflow man-
agement ; B.8 [Performance and reliability]: Performance
Analysis and Design Aids

General Terms

Theory, Performance, Algorithms

Keywords

QoS prediction, Web Services Composition, BPMN

∗This research was funded by HP Brasil under the
Baile Project and from the European Community’s Sev-
enth Framework Programme FP7/2007-2013 under grant
agreement number 257178 (project CHOReOS-Large Scale
Choreographies for the Future Internet). Yanik Ngoko is
supported by the FAPESP foundation of the State of São
Paulo.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MGC2012, December 3, 2012, Montreal, Quebec, Canada.
Copyright 2012 ACM 978-1-4503-1608-8/12/12 ...$15.00.

1. INTRODUCTION
In this paper, we are interested in estimating the Quality

of Services (QoS) of Web Services Composition (WSC). As
stated in many other previous work [Cardoso et al. 2004,
Zeng et al. 2004] such a task is primordial in the design of
efficient middleware for service composition management.
Our actual work is part of a middleware project 1 where
QoS estimation must serve for optimal service selection and
online planning during the execution [Issarny et al. 2011].
The service composition that we are interested in can be
described as BPMN choreography of services, viewed here
as multiple BPMN orchestration processes that communi-
cate [Weske 2007]. On these compositions, we focus on the
design of a fast and automatic approach for the estimation
of the Service Response Time (SRT) that can be expected
from a user request.

The SRT estimation of WSC has been investigated in pre-
vious work [Cardoso et al. 2004, Zheng et al. 2010, Zeng et al.
2004, Xiangpeng et al. 2007, Goldman and Ngoko 2012]. A
common aspect in these studies is that the QoS of a compo-
sition is computed based on a set of aggregation rules that
state how to infer the QoS of the composition from the one of
its service constituents, considered known. We will assume
in this work that this assumption holds.

Despite the abundance of work on QoS prediction for ser-
vices composition, we believe that few match our needs.
This is made clear when considering WSC with a business
process viewpoint. In this vision, WSC belong to two classes:
composition that corresponds to a single enterprise business
process and those corresponding to multiple communicating
enterprise processes [Weske 2007]. While most work on QoS
prediction deal with the first case, it is the multi-processes
case of interest in this paper.

There are at least two key differences between the single
and multi-process cases. The first one is that the multi-
processes introduce at least two communication levels: ser-
vice communication within a process (for e.g communica-
tion in a LAN) and communication between processes (for
e.g inter-LAN communication). Most of work on QoS pre-
diction ignore the communication cost. While this assump-
tion can hold when having a single enterprise process (with
a fast enterprise network), it is not a reasonable assump-
tion when considering multiple processes and therefore net-
works. A second difference between these two types of pro-
cesses appears when considering their BPMN graph repre-
sentation (see Figure 1). While in the first case, we might
have structured graphs [Polyvyanyy et al. 2011] where a Web

1www.choreus.eu

A

B C

D

E

F

a) Single BPMN process b) Multiple BPMN processes

POOL 1 POOL 2

A

B C

D

Figure 1: Single and multiple BPMN processes for
composition of services. A,B,C,D, E and F corre-
spond to Web Services operations. The notations
are based on the BPMN collaboration diagram.

Service operation has only one predecessor, in the second,
the graph is by nature unstructured because of precedences
induced by inter-processes communication. This observa-
tion is of importance because as claimed in [Zheng et al.
2010], most work on QoS predictions are based on structured
graphs [Cardoso et al. 2004, Goldman and Ngoko 2012].

In this paper, we consider the prediction of the SRT for
WSC corresponding to multiple communicating business pro-
cesses. As stated previously, it is common to base the QoS
computation on a set of aggregation rules. We proceed in the
same way here. As aggregation rules, we will use the ones
proposed in single process prediction [Cardoso et al. 2004,
Goldman and Ngoko 2012], together with new ones that we
derive from an interpretation of inter-process communica-
tion. Our main contribution is a polynomial time algorithm
(in the number of services) that generates from aggregation
rules a linear program whose solution is the SRT for the
service composition to evaluate. This proposal suggests two
steps for SRT prediction: the linear model generation fol-
lowed by its resolution, using a linear solver.

Our contribution differs from previous work on QoS pre-
diction for services composition on two points. The first
is that we consider a modeling of multi-process composi-
tion based on BPMN notation for the description of collab-
oration process [Weske 2007]. The second is that we take
into account communication and propose new semantics in-
spired by work done in distributed and parallel computa-
tion [Banikazemi et al. 1999]. This is a major difference
when considering other work on QoS prediction with linear
programming [Zeng et al. 2004].

The remainder of this paper is organized as follows. In
Section 2, we propose a model for WSC. In Section 3 we de-
fine our semantics for SRT prediction and in the Section 4,
we explain how to estimate the SRT. We conclude in Sec-
tion 5.

2. MODEL
In this work, we represent a WSC as a Hierarchical Ser-

vice Graph (HSG) [Goldman and Ngoko 2012]. Such graphs
consider three abstraction layers for any services composi-
tion: business processes, Web Services and machines layers.

The business processes layer that we will also refer as the
operations graph describes concurrent business processes.
We specify this graph using the BPMN notations for collab-
oration process. As a result, an operation graph as illus-

A

B C

D

E

F

a) Layers view of a WSC graph b) Operations view

 OPERATIONS

AND BUSINESS PROCESSES

WEB SERVICES

MACHINES

POOL 1 POOL 2

Figure 2: Views of a Web Service Composition

trated by Figure 2b) is made of operations (e.g A − D in
Figure 2b), interconnected within a business process or pool
by BPMN connectors (e.g AND split connector in Figure 2b)
and communicating between pools with messages exchanges
(e.g between C and E).

In a general case, operations can belong to multiple Web
Services existing in multiple instances on various machines [Gold-
man and Ngoko 2012]. For the purpose of simplification, we
will assume that any operation belongs to a unique Web
Service and business process. Moreover, any Web Services
exist in one instance on a single machine.

Our approach for QoS prediction is deeply related to the
structure of the operation layer. In a formal manner, we de-
fine an operations graph by a tupleGo = (P,O, C,Eocp, Eoc, Eoo)
where: P = {P1, . . . , Ph} is the set of pools, O the set of WSs
operations and C the set of BPMN connectors (we consid-
ered the AND, XOR and OR connectors). The connectivity
of the operations graph is given by the sets Eoc, Eocp and
Eoo. Since, Go captures a business process, it is an directed
graph. Here, Eoc describes precedence constraints between
operations and connectors, Eocp, states for each operation
and connector its pool and Eoo describes messages connec-
tions between operations of separated pools. We will make
various restriction on graph connectivity. For introducing
them, let us first consider the following definitions.

2.1 Some definitions
Definition 1 Pool operations graph: Given an op-

erations graph Go = (P,O, C,Eocp, Eoc, Eoo), we define the
pool operations graph for the business process Pi asGo[Pi] =
(O∪C,Eoc[Pi]) where Eoc[Pi] is the subset of Eoc containing
all elements of the pool Pi.

Definition 2 Scope: Let us consider a pool operations
graph Go[Pi] = (O ∪ C,Eoc[Pi]) and an element x ∈ O ∪ C.
a) x is in the scope of a split connector y ∈ C if x and y
are in the same pool and there exist a path µ = (y, y1),
(y1, y2) . . . (yl, x) from y to x in which the number of split
connectors having the type of y (x excluded) is greater than
the number of join connectors of the same type. b) In the
case where the path µ = (y, y1), (y1, y2) . . . (yl, x) is the
shortest possible one from any split connector whose x is in
the scope, we say that x is closely in the scope of y.

In Figure 3b), the operations A,B,C,D are in the scope
of the AND split connector and, B and C are closely in its
scope.

Definition 3 Sending and receiving operations : Given
two operations ou and ov, if (ou, oq) ∈ Eoo, then we will say
that the operation ou sends in its execution a message to oq.
We will also qualify ou in this case as a sending operation
and oq as a receiving one. With these elements, we for-

A

B

C

A

B

C

a) Authorized joins c) Non Authorized joins

A

B

C

b) Authorized joins

D

Figure 3: Example of authorized an non-authorized
joins

mulate in the next section the structural restriction that we
make on the connectivity.

2.2 Structural restrictions
H1: Pool operations graphs are obtained by composing

the restricted set of generic structures of Figure 4 . Here,

G1 G2

Sequence

G1

Gi

Gn

AND Split

G1

Gi

Gn

XOR Split

G1*

Gi*

Gn*

OR Split/Join

Loop

G1*

Gi*

Gn*

AND Join

G1*

Gi*

Gn*

XOR Join

G1* Gn*

Figure 4: Set of generic subgraph patterns

each Gi refers either to a subgraph built from a composi-
tion of these generic structures, or to a single operation.
G1∗, . . . Gn∗ refer to subgraphs having a unique node with-
out predecessors and a unique one without successors. Fi-
nally, let us remark that in the proposed patterns, for each
subgraph having a split OR connector, there must be a cor-
responding join OR connector.

H2: Within each pool, there is a unique node without pre-
decessors. This node will be called the initial pool node

while nodes without successors will be called terminal nodes.

H3: All elements that are in a branch leading to a same
XOR (resp. AND) join connector must all be in the scope of
a same XOR (resp. AND) split connector. Thus, we can
say that there is no violation of restriction H3 on the graphs
of Figures 3a) and 3b), whereas in 3c), there is a violation
since B and C lead to an XOR join connector although they
are executed within an AND split.

H4: Any receiving operation must be linked to exactly one
sending operation. This leads us to consider two categories
of communication: one-to-one communication, in the case
where for a sending operation there is a unique receiver and,
one-to-many communication, where a sender has multiple
receivers.

H5: If a couple (ou, ov) belongs to Eoo then ou and ov
belong to different pools

A AB

B1

Bi

Bn

a) One to One communication b) One to many communication

A

B1

Bi

Bn

C

c) Non authorized

Figure 5: Type of communication

H6: A receiving or sending operation must not be in the
scope of an XOR, or an OR connector.

H7: In the set of pools P = {P1, . . . , Ph}, there is a subset
P ′ ⊆ P of h−1 pools such that the initial node of any graph
Go[Pi], Pi ∈ P ′ is a receiving operation. For the unique pool
P ∗ = P \P ′, the initial node cannot be a receiving operation.

With the rule H7, we assume that the execution of a re-
quest will always start in the pool P ∗ and will reach the
other pools by message exchanges.
The motivation behind the rule H6 is to avoid deadlock sit-
uations where a receiving operation can infinitely wait for a
non executed sending operation.

We described the HSG model that we will use for WSC
representation. In the next section, we will propose a se-
mantic model for SRT computation on such graphs.

3. EXECUTION SEMANTICS
Our semantical proposal consists of two set of aggregation

rules based on the connectivity of the operations graph. The
first set states how to aggregate SRT on a pool operations
graph. The second takes into account communication be-
tween pools.

3.1 Aggregation rules for a pool
For computing the SRT that can be expected from a pool

operations graph, we adopt the aggregation rules defined
in [Goldman and Ngoko 2012, Cardoso et al. 2004]. Here,
each operation x ∈ O is associated with a mean SRT that
we will denote T (x). The SRT led by connectors is set as
null.
On the generic subgraphs of Figure 4, we present in Table 1
the rules that we will use. Here, T (Gi) denotes the SRT that
can be expected from a subgraph Gi. On a generic XOR
split graph, a request can be routed towards one subgraph
G1, . . . , Gn. We suppose that there is a probability pi for
each of these possibilities. For a loop subgraph, we assume
that there is a maximal number of loops nl and a probability
pli to loop i times. Finally, for an OR split/join , we assume
for simplification that the request can only be routed to the
subgraph G1, G2 or simultaneously, to both. Each routing
occurrence, has a known probability por1, por2 and por||.

Sequence AND Split AND Join

T (G1)+T (G2) max{T (G1),...,T (G1)} max{T (G∗
1),...,T (G∗

1)}

XOR Split XOR Join LOOP

∑n
i=1 pi.T (Gi)

∑n
i=1 pi.T (G∗

i)
∑nl

i=1 pli.{T (G∗
1)+···+T (G∗

n)}

OR Split/Join por1.T (G1)+por2.T (G2)+por||.max{T (G1),T (G2)}

Table 1: SRT aggregation on subgraphs patterns

3.2 Communication semantics
Given a sending or receiving operation A, we consider that

its execution comprises two parts: an operational part

of cost T (A) and, a communication part where message
exchanges occur. On sending operations, we assume that the
operational part is always executed before, while we have the
inverse on receiving operations.

For modeling the costs of the communication part, we
adopt the one port model without recovering [Banikazemi
et al. 1999]. Assuming that an operation A sends a message
to B, this model proposes a decomposition of the commu-
nication in: a sending phase, where the machine on which
A is engaged in the sending of information on communica-
tion links, a routing phase (T (A,B)), where information
go from the machine of A to the one of B and, a receiving
phase where the machine on which B is run, gathers the sent
information. The time duration of these phases is respec-
tively denoted by TSend(A,B), T (A,B) and TRecv(A,B).

In the time evaluation, we will interpret one-to-many com-
munication as series of one-to-one communication. On Fig-
ure 5b for example, the total time required for A to send
information on the link will be

∑n

i=1 TSend(A,Bi). More,
the reception cannot be completed for any operation Bi be-
fore min

1≤u≤n
{TSend(A,Bu) + T (A,Bu) + TRecv(A,Bu)} time

units.

A

B

Sending
Routing

Receiving

Total comm. time = Tsend(A,B) + T(A,B) + Trecv(A,B)

d1

d2

d3

Time

d0 Tsend(A,B) = d1-d0

T(A,B) = d2-d1

Trecv(A,B) = d3-d2

Figure 6: Exchange of information between A and
B, starting at the date d0 and ending at d3

At this point, we presented a modeling of our service com-
position and requests execution semantics. In the next, we
will present our approach for QoS prediction.

4. SRT PREDICTION
We propose automatically generating linear program (LP)

from SRT prediction for any service composition. Its solu-
tion gives the SRT of the considered service composition.

4.1 Algorithm for LP generation
For generating LP, with each element x ∈ O ∪ C, we as-

sociate a real variable tx. The LP objective function targets
the minimization of the objective value denoted by Z(LP).
The idea in the LP generation is to define a set of constraints
on each variable tx and Z(LP) (according to the aggregation
rules) such that if LP is executed, then Z(LP) will contain
the mean SRT.

The constraints definitions for any node x are based on
two concepts: the reachability subgraph RG(x) and the
reachability probability pa(x). We define pa(x) as the prob-
ability for a request started in the initial pool node where
x is located to reach it. In Figure 7 for instance, pa(C) is
the probability for a request started on g1 to reach C. By
definition, pa(C) = 1. We define RG(x) as the subgraph of
Go that comprises all paths leading to x, starting from the
initial pool node. In Figure 7 for instance, RG(D) is given
by the subgraph, in the dashed box, containing g1, A, g2, D.

It is important to notice that a subgraph RG(x) might
not fullfill the structural restrictions defined for operation
graphs. RG(D) for instance has a split connector with only
one successor. In such situation, we consider in RG(x) that
this connector is a virtual operation, with a null SRT value.

The LP generation is based on the two reachability con-
cepts introduced below. More precisely, let us suppose that
from aggregation rules, we have the mean SRT T (RG(x)) for
a request to traverse RG(x). The LP generation is done in
two main stages. The first stage objective is to generate con-
straints for setting in variables tx, the value pa(x).T (RG(x)).
Based on these partial cumulated SRT, the second stage de-
fines constraints on Z(LP) such as to cumulate the values
tx on terminal nodes in order to return the mean SRT.

A

B

D

C

F

E

g1

g

g

2

3

G H

Pool1

Pool2

J

I
g4

g5

Figure 7: Example of operations graph. In dashed
box, we have RG(D).

For setting the values pa(x).T (RG(x)) in tx, we consider
again two-sub stages depending on the fact that an element
of RG(x) is or is not involved in communication between
pools. Therefore, the general steps of the LP generation
process are given in Figure 8. These steps will be discussed
in the next sections.

1. Computation of reachability probabilities;

2. Generation of intra-pools constraints;

3. Generation of inter-pools constraints;

4. Generation of the constraints defining the global SRT.

Figure 8: Stages for LP generation

4.2 Computation of reachability probabilities
We will compute reachability probabilities on each arc

(u, v) ∈ Eoc. As input, we assume that on each arc (u, v),
we have the conditional (or relative) probability pr[(u, v)]
for a request to be routed on v, knowing that it reached the
connector whose v is closely in the scope. At first glance,
this input assumption may seem different from classical ones
used in QoS prediction. However, this is not the case. In-
deed, let us consider an arc (u, v), such that v is strictly in
the scope of an XOR split connector c. If the ith branch
of c is the one leading to v and has a probability pi to be
executed, then by definition, pr[(u, v)] = pi. In the same
way, if v is closely in the scope of an AND split connector,
we have pr[(u, v)] = 1. Finally, in the case where for an arc
(u, v), v is not in the scope of a connector, we assume that
pr[(u, v)] = 1. More globally, we can easily relate the condi-
tional probabilities pr[.] to the classical ones pi and pori (see
Section 3.1) used in aggregation rules.

The reachabilitiy probabilities are derived from the con-
ditional ones. We will distinguish between three cases. In
the first case, u does not have any predecessor, then we set

pa[(u, v)] = pr[(u, v)]. In the second, u is not a join connec-
tor and has a predecessor u′. We define:

pa[(u, v)] =

{

pa[(u′, u)] if u ∈ O;

pr [(u, v)].pa[(u′, u)] otherwise.

In Figure 7, this gives: pa[(g2,E)]=pr[(g1,A)].pr[(g2,D)].pr[(g2,E)]

and pa[(g4,I)]=pr[(G,H)].pr[(g4,I)]. Finally if u is a join connec-
tor, with the predecessors u′

1, . . . u
′
m then, we have:

pa[(u, v)] =

{

pa[(u′
1, u)] if u is an AND Join connector ;

∑m
i=1 pa[(u

′
i, u)] otherwise.

In the definition of reachability for the arcs (u, v), we ignored
cases where a request can be routed to multiple branches
(with OR connectors). For capturing this, we assume that
for each OR join connector v, por||(v) defines the probability
for a request to be routed simultaneously on both branches
leading to v. Again, one can notice that this input also exists
in classical aggregation rules.

4.3 Generation of intra-pool constraints
In intra-pool constraints, we ignore the communication

between operations. These constraints aim at setting in each
variable tx the value pa(x).T (RG(x)). Here, constraints are
generated based on arcs of the operation graph. For each
(u, v) ∈ Eoc we will generate an equation Eq as follows:
C1: [u does not have a predecessor]: Eq ←− tu ≥ T (u);
C2: [u, v ∈ O] : Eq ←− tv ≥ tu + pa[(u, v)].T (v);
[u ∈ O ∪ C, v ∈ C]
C3: If v is an XOR join that closes a loop (there is (v, s) ∈
Eoc and a path (s, y1), . . . , (yn, u) of Eoc), then Eq ←− tv ≥∑nl[v]

i=1 pli(tv − ts) + ts; Here, nl[v] is the maximal index of
looping stage;
C4: If v is a split connector then Eq ←− tv ≥ tu;
[u ∈ C, v ∈ O ∪ C]
C5: If u is a join connector then Eq ←− tv ≥ tu;
C6: If u is a split then Eq ←− tv ≥ pr[(u, v)].tu+pa[(u, v)].T (v);
[v is a join connector whose predecessors are u1, . . . , un]
C7: If v is an AND JOIN Eq ←− tv ≥ tui∀i ∈ {1, . . . , n};
C8: If v is an XOR JOIN but does not close a loop Eq ←−
tv ≥

∑n

i=1 tui ;

C9: If v is a OR JOIN we generate Eq ←− tv ≥
∑2

i=1 tui +

por||(v).tm(u1, u2) and Eq ←− tm(u1, u2) ≥
tui

pr[(ui,v)]
, i =

1, . . . 2;
The application of our constraints on the graph of Fig-

ure 7, will give the equations listed in Figure 9.

1. tg1≥0 7. tg3≥tD

2. tA≥tg1+T(A) 8. tE≥pa[(g3,E)](tg3+T(E))

3. tB≥tg1+T(B) 9. tF ≥pa[(g3,F)](tg3+T (F))

4. tg2≥T (A) 10. tH≥tG+T (H)

5. tC≥tg2+T(C) 11. tI≥pa[(g4,I)](tg4+T (I))

6. tD≥tg2+T (D) 12. tJ≥pa[(g4,J)](tg4+T(J))

13. tG≥T (G) 14. tg5≥tI+tJ

Figure 9: Intra-pools constraints on the example 7

4.4 Generation of inter-pools constraints
The approximation of T (RG(x)) proposed in intra-pools

constraints might be incorrect since we neglect here commu-
nication. These values will be corrected with the generation
of inter-pools constraints. For this, let us recall that we have
two type of communication between operations: one-to-one

communication and one-to-many communication. For each
type of communication, we generate the constraints as fol-
lows.

One-to-one communication: we have an arc (u, v) ∈
Eoo. Since u is an operation, then we know that from intra-
pool constraints, there is a generate equation with the syntax
tu ≥ rhs(u). Here rhs(u) is the right hand side of the
equation. For handling messages, we will add the equations:
C10: Eq ←− tu ≥ rhs(u) + TSend(u, v);
C11: Eq ←− tv ≥ tu + T (u, v) + TRecv(u, v) + T (v);

The idea in these equations is that an arc (u, v) states
that u will end its execution after the termination of all
its predecessors (after the time rhs(u)) added to message
sending cost. More, the receiving on v can start only if
the message is available and its predecessors have been all
executed. In these constraints, probability values do not
appear because we only admit message exchanges done by
operations on which a user request will be routed with an
absolute probability of 1.

One-to-many communication: we have (u, v1), . . . , (u, vn) ∈
Eoo. Then, we will generate the following equations:
C12: Eq ←− tu ≥ rhs(u) +

∑n

i=1 TSend(u, v);
C13: Eq ←− tvi ≥ rhs(u)+H(n).E[TS]+T (u, vi)+TRecv(u, vi)+
T (vi).

Here, H(n) = 1
n
+ 2

n
+· · ·+1 and E[TS] =

1
n

∑n

i=1 TSend(u, vi)
In comparison to the one-to-one case, the main changes in
these equations is the time required for an operation to
start the reception. The challenge in its computation is that
we do not have the order in which the sending will occur.
We approximate it as follows. u will make a sending to
each operation vi that will lead to a mean sending time of
T̄Send(u, V) = 1

n

∑n

i=1 TSend(u, vi). Since at a moment only
one sending is done, any operation vi can be at any position
between 1 and n in the order of sending. If an operation is
at the position j, then the reception for it can start after
approximately j.T̄Send(u, V) + T (u, vi) time units. Admit-
ting that the operation has an equiprobability to be at any
position j ∈ {1, . . . , n}, we have the formula.

From messages constraints, we derive the equations of Fig-
ure 10.

15. tB≥tg1+T(B)+TSend(B,G); 16. tG≥tB+T(B,G)+TRecv(B,G)+T (G);

17. tH≥tG+T(H)+TSend(H,D); 18. tD≥tH+T(H,D)+TRecv (H,D)+T (D);

Figure 10: Inter-pools contraints in the example 7

4.5 Constraints generation for the objective value
The generation of these constraints aims at cumulating the

minimal partial costs set in variables tx by the other con-
straints. These constraints are generated pool by pool. Let
us suppose that for a pool operations graph Pi, we have the
terminal nodes u1, . . . , ue. We will create for each split con-
nector ci a set Sci containing the terminal elements that are
in its scope. This gives us a global set S = {Sc1 , . . . , Scm}
that we will denote as the terminal set cover. We then
choose arbitrarily one set Sci such that the ci connector
does not comprise another connector cj ∈ {c1, . . . , cm} in
its scope. If ci is an AND split, we generate the equation
tSci
≥ tuj ,∀uj ∈ Sci . If ci is an XOR split, we generate the

equation tSci
≥

∑

uj∈Sci

tuj . After this generation, we create

a node h(Sci) whose associate time variable is tSci
and re-

place all elements of Sci in the sets of S by h(Sci). We next
remove Sci from S and start again the process.

At the end, the terminal set cover will contain a unique set
Sf . We will then set the constraint tPi ≥ th(Scu),∀h(Scu) ∈
Sf . We recall that Pi refers to the pool on which we are gen-
erating constraints. After the generations of objective values
for each pool, we generate the constraints Z(LP) ≥ tPi , ∀Pi.
The objective function of our linear program consists of min-
imizing Z(LP).

In applying this principle on the example 7, we will con-
sider the terminal set cover S = {Sg1 , Sg2 , Sg3 , Sg4} where:
Sg1 = {B,C,E, F}, Sg2 = {C,E, F}, Sg3 = {E, F}, Sg4 =
{g5}. The set eliminations will generate the equations of
Figure 11. We end here the presentation of our algorithm

19. tSg3
≥tE+tF 20. tSg2

≥tC 21. tSg2
≥tSg3

22.tSg1
≥tB

23. tSg1
≥tSg2

24. tP1
≥tSg1

25. tSg4
≥tg5 26. tP2

≥tSg4

27. Z(LP)≥tP1
28. Z(LP)≥tP2

Figure 11: Objective function equations 7

for the generation of LP. Since, we are interested in fast pre-
dictions it is important to consider its complexity. We have
the following result.

Theorem 4.1. Given a graph Go = (P,O, C,Eocp, Eoc, Eoo),
the linear program that we will generate has at most O(n)
variables and O(n) equations where n = |O ∪ C|.

Proof. Any element of O∪C and any pool has one vari-
able to which it is related in the linear program. Since the
number of pools is lower than n, we have at most 2|O| vari-
ables. The constraints in the linear programming can be re-
lated to pools or to the objective function generation. Since,
constraints from pools are denoted Ci, i ∈ {1, . . . , 13}, we
can easily there is a positive integer α bounding the number
of equations issued from this constraints to 13.αn equations.

We have three type of objective function constraints. The
first type has the form tSci

≥ rhs(Sci). Since for each set
Sci , the number of such equations cannot exceed the outgo-
ing degree of the connector ci, we have at most n equations
of this form (when we consider all sets of S). The second
type of objective constraints has the form tPi ≥ rhs(Pi).
The number of such equations is bounded by the maximal
outgoing degree of a connector in the pool Pi. Thus, the to-
tal number of such equations cannot exceed n. Finally, we
have at most |P | equations Z(LP) ≥ tPi . Since we cannot
have more pools than operations and connectors (|P | ≥ n),
we have the proof.

The above result shows that in the mean case, we can
expect from a linear solver a solution for SRT in polynomial
time.

We did a preliminary evaluation of our approach on 20 ex-
amples provided by a discrete time simulator (ChoreoSim 2).
Due to space limitation, we can not provide testing details.
However, our preliminary results show that using linear pro-
gramming, we can compute SRT with a precision close to the
one obtained by a fine simulation.

5. CONCLUSION
In this paper, we introduced a new approach for SRT pre-

diction on complex services composition that in a business
process viewpoint can be considered as choreographies of

2http://ccsl.ime.usp.br/wiki/index.php/ChoreoSim

services. This approach is based on classical aggregation
rules for SRT prediction and a new communication model.
Our main contribution is an algorithm that on WSC, gen-
erate a linear program that when solved, return the SRT of
the service composition.

For continuing this work, we envision two main issues.
The first is to enlarge the set of possible BPMN constructs
in the definition of WSC. The second issue is to extend our
model to other QoS parameters like the price, reliability
or availability of service composition [Cardoso et al. 2004].
Finally, we intend to refine our communication modeling
for including more aspects related to Web Services network
protocols (SOAP, REST) [Josuttis 2007].

6. REFERENCES
[Banikazemi et al. 1999] Banikazemi, M.,

Sampathkumar, J., Prabhu, S., Panda, D. K., and
Sadayappan, P. 1999. Communication modeling of
heterogeneous networks of workstations for performance
characterization of collective operations. In Proceedings
of the Eighth Heterogeneous Computing Workshop.
HCW ’99. IEEE Computer Society, Washington, DC,
USA, 125–133.

[Cardoso et al. 2004] Cardoso, J., Sheth, A., Miller,

J., Arnold, J., and Kochut, K. 2004. Quality of
service for workflows and web service processes. Web
Semantics: Science, Services and Agents on the World
Wide Web 1, 3, 281 – 308.

[Goldman and Ngoko 2012] Goldman, A. and Ngoko,

Y. 2012. On graph reduction for qos prediction of very
large web service compositions. In International
Conference on Service Oriented Computing (SCC).
IEEE Press, Hawai, USA, 258–265.

[Issarny et al. 2011] Issarny, V., Georgantas, N.,
Hachem, S., Zarras, A., Vassiliadis, P., Autili, M.,
Gerosa, M. A., and Hamida, A. B. 2011.
Service-oriented middleware for the future internet:
state of the art and research directions. J. Internet
Services and Applications 2, 1, 23–45.

[Josuttis 2007] Josuttis, N. 2007. Soa in Practice: The
Art of Distributed System Design. O’Reilly Media, Inc.

[Polyvyanyy et al. 2011] Polyvyanyy, A.,
Garćıa-Bañuelos, L., Fahland, D., and Weske, M.

2011. Maximal structuring of acyclic process models.
CoRR abs/1108.2384.

[Weske 2007] Weske, M. 2007. Business Process
Management: Concepts, Languages, Architectures.
Springer.

[Xiangpeng et al. 2007] Xiangpeng, Z., Chao, C.,
Hongli, Y., and Zongyan, Q. 2007. A qos view ofweb
service choreography. In Proceedings of the IEEE
International Conference on e-Business Engineering.
ICEBE ’07. IEEE Computer Society, Washington, DC,
USA, 607–611.

[Zeng et al. 2004] Zeng, L., Benatallah, B., H.H. Ngu,

A., Dumas, M., Kalagnanam, J., and Chang, H.

2004. Qos-aware middleware for web services
composition. IEEE Trans. Softw. Eng. 30, 5, 311–327.

[Zheng et al. 2010] Zheng, H., Yang, J., and Zhao, W.

2010. Qos analysis and service selection for composite
services. In Services Computing (SCC), 2010 IEEE
International Conference on. Miami, USA, 122 –129.

