Test-Driven Development Metodology Proposal
for Web Service Choreographies*

Felipe M. Besson, Pedro M. B. Leal, Fabio Kon

Department of Computer Science
Institute of Mathematics and Statistics
University of Sdo Paulo (USP)

{besson, pedrombl, fabio .kon}@ime .usp.br

*The research leading to these results has received funding from HP Brasil under the Baile Project and from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement number 257178 (project CHOReOS - Large Scale Choreographies for
the Future Internet).

1. Introduction

Web service choreographies are a scalable and distributed approach for composing web ser-
vices in complex business workflows. Differently from orchestrations, which are a centralized
approach, the interaction among the choreography services is collaborative with no centralized
coordination point. Each participant plays a role specified in a global model that defines the
messages exchanged in the collaboration. Thus, choreography is a means to document and
monitor Business-2-Business (B2B) interactions from a global perspective [Pel03].

A few standards, such as Web Service Choreography Description Language (WS-CDL),
OMG’s Business Process Model and Notation version 2 (BPMN2), have been proposed for
modeling choreographies. However, up to now, none of them have experienced wide adoption.
As a consequence, choreographies are implemented using ad hoc development process models.
Neither the functional behavior nor scalability of choreographies is assessed properly.

Our goal is to apply Test-Driven Development (TDD) in choreographies to aggregate
more discipline in their development to leverage adoption of choreographies. TDD consists in
a design technique that guides the development of software through testing [BecO3) [Fow11].
Experiments and empirical observations in the industry have shown that TDD applied in tra-
ditional software (client-server model) increases code quality and reduces defect density. An-
other experiment conducted by George and Williams [GWO3]] with 24 professional developers
showed that 87.5% of the programmers believed that TDD facilitates requirements understand-
ing, and 95.8% believed that TDD reduced debugging effort. Later on, a case study [NBOOO]
conducted in Microsoft assessed the impact of TDD in two different teams. In the first one,
although the initial development time of the project using TDD increased in 35%, the density
of defects decreased 62%. In the second case, the initial development time increases 15%,
while the density of defects decreased 76%.

Given this favorable retrospect, this paper presents a TDD methodology proposal for
choreographies. The methodology is supported by the Rehearsal framework [BLK11], a tool
for applying automated unit, integration, and scalability testing on choreographies. In Sec-
tion [2, we introduce the Test-Driven Development technique. In Section [3| we present the
development activities of a general choreography development model. We present our method-
ology proposal in Section 4] Finally, we draw our conclusions and the ongoing work to assess
the methodology, and the Rehearsal tool in Section [5]

2. Test-Driven Development (TDD)

Test-Driven Development (TDD) consists of a design technique that guides the software de-
velopment through testing [BecO3, [Fow11]]. TDD can be summed up in the following iterative
steps:

e Write an automated test for the next functionality to be added into the system;
e Run all tests and see the new one fail;

e Write the simplest code possible to make the test pass;

e Run all tests and see them all succeed;

e Refactor the code to improve its quality.

In addition to these steps, according to Astels [[Ast03]], to apply TDD, developers should
follow principles such as: (i) maintaining an exhaustive suite of programmer tests; (ii) only

2

deploying code into the production environment if it has tests associated. Differently from unit
tests, which are written to assess a method or class, programmer tests are tests written to define
what must be developed. Programmer tests are similar to an executable specification since
these tests help developers understand why a particular function is needed, to demonstrate how
a function is called, or what are the expected results [Jef].

Having tests associated with the code, gives the developer confidence and courage to
make changes and detect immediately (or in a short time) possible introduced problems. Thus,
with the absence of tests, it is not possible to assure the correct behavior of the code when it
is deployed or integrated into the production environment. Given this importance, in eXtreme
Programming (XP) [BecO0]], it is often said that a feature does not exist until there is a test suite
associated to it.

As a design technique, TDD is not only about software testing but also a learning
process. Applying different levels of tests, the development team can clarify the user and
customer expectations, and then refine the system requirements [FP09].

3. Web Service Choreographies

A choreography is a collaborative interaction in which each involved node plays a well defined
role. A role defines the behavior a node must follow as part of a larger and more complex in-
teraction. When all roles have been set up, each node is aware of when and with whom to com-
municate, based on pre-defined messages specified by a global model [BBRW09]]. Therefore,
when the choreography is started (enacted), there is no central entity driving the interaction of
the choreography services.

return
purchase for each Supermarket make the purchase of the products canfi,;ramn

related to them

]

purchase
products with
order id

= Receive
confirmation
with Shipper
endpoint

Customer

=2

purchase

[
return Shipper
endpoint

deliver product

Supermarket

= —
=
Q—> setDelivery -

Shipper

Figure 1. Choreography specified in BPMN2

In Figure |1} we present an example choreography specified in BPMN2. This choreog-
raphy is composed of three roles (Customer, Supermarket, and Shipper), which are interacting

3

to execute the Purchase operation. Choreographies can be enacted by using distributed or-
chestrations [PelO3]]. This way, at a high level, the global interactions of many participants are
specified by the choreography model (as depicted in Figure [I]), but each role can be played
by composing a service or a set of services into an executable process. In a choreography, a
role is well defined by an expected interface and behavior. In our example, the choreography
participant playing the Customer role must be able to receive the Purchase operation, receive
from other participant the Shipper endpoint, and then return the Purchase confirmation to the
end-user.

In this approach, the expected role interface can be defined in the Web Service Descrip-
tion Language (WSDL), while the behavior can be specified in the Business Process Execution
Language (BPEL). Thus, to play a specific role, a service or a set of services are orchestrated
using BPEL, and the WSDL interface exposed by the executable process must match the role
interface. This approach is not the only method for implementing the roles of a choreogra-
phy. As long as the interface matches with the expected role interface, the behavior can be
implemented using other approaches such as Service Component Architecture (SCA) or other
technologies.

4. Methodology Proposal

The methodology proposed follows the enactment approach presented in the previous section.
To apply Test-Driven Development on a choreography, the methodology is supported by the
Rehearsal [BLK11]. Rehearsal is a framework developed in Java for automated testing of web
service choreographies. During choreography development, Rehearsal will provide features
for testing the entire process of composing services. To achieve that, the framework provides
the following main features:

e Abstraction of choreography: The elements of a choreography such as roles, services,
and messages exchanged are represented by Java objects. Through these objects, the
developer will interact easily with the choreography elements for writing automated
tests in a simple and natural way;

e Dynamic generation of web service clients: Given a web service URI, the framework
provides mechanisms for invoking the service operations dynamically, avoiding the
need to program manually service stubs.

e Message Interceptor: the messages exchanged in the choreography can be intercept,
and then, validated by the developer;

e Service mocking: double services [MesO7]] (e.g., a mock) can be created to simulate
real services that cannot be accessed or are not available during the tests;

e Scalability testing support: Enables assessing the choreography performance and its
services as work-load increases.

Based on these features, the TDD methodology proposed for choreographies consists
of four phases that are applied iteratively. These phases are depicted in Figure [2| All internal
activities belonging to each phase are performed in a testing (development) environment, which
can be the developer computer or a cloud infrastructure when the activities demand a large
amount of resources.

Depending on the development scenario, the internal activities of each phase are not
fully executed. Choreographies can be implemented by partners belonging to different organi-

4

P1
Creation and/or
adaptation of
atomic services

—

J
4)
Acceptla,:ce and Phases °f Integratiolr:if services
Scalability the TDD to compose the
testing MethOdOlOgy choreography roles
(G J
P3
Integration of roles
to compose the
choreography

Figure 2. Methodology Phases

zations, thus, from a partner point of view, a developer can be involved in different development
scenarios. In the first scenario (S1), the developer can be responsible for defining a new role
or a set of roles for an existing choreography. In this case new roles must be developed. In
the second scenario (S2) the role might already be defined, and the developer is in charge of
developing a set of web services to implement this role. Finally, in the third scenario (S3), a
partner (e.g., an organization) is beginning to develop a choreography. In this case we can say
that the developer implements a choreography, or a part of it, from scratch. In Table (1| we map
the phase activities to each scenario, then, we describe in detail the phases in the next sections.

Scenario 1 (S1) Scenarion 2 (S2) Scenario 3 (S3)
- test-driven approach - contract-driven approach - test-driven approach
P1 | - unit testing - unit testing - unit testing
(service interface) (service interface) (service interface)
- service mocking - service mocking - service mocking
p2 |- integration testing - integration testing - integration testing
(internal message exchange) (internal message exchange) (internal message exchange)
- compliance testing
- role mocking - role mocking
P3 | - integration testing - integration testing - integration testing
(external message exchange) (external message exchange) (external message exchange)
pa |- choreography features testing | - choreography features testing | - choreography features testing
- scalability reached assessment | - scalability reached assessment | - scalability reached assessment

Table 1. Activities present in each phase for each development scenario

Phase 1: Creation or adaptation of atomic web services

During the implementation of the choreography roles, new web services need to be created or
existing ones must be adapted to implement the role requirements. Normally, a contract-driven
approach is used for creating or adapting these services. In this case, the service operations
have already been defined in a contract, and based on it, the service is coded. In the case of
scenarios S1 and S3, instead of using a contract-driven approach, the developer may apply a
test-driven approach using the Rehearsal framework.

To invoke the services, developers can use tools, such as Apache Axi{] and JAX—WSﬂ

I Apache Axis: http://axis.apache.org/axis
2JAX-WS:http://jax-ws.java.net

http://axis.apache.org/axis
http://jax-ws.java.net

With these tools, it is possible to create stub objects (also called clients) from a valid WSDL
specification, and then write tests that invoke the service through the stubs. One drawback
behind this approach is that without the contract (e.g., WSDL specification), stubs cannot be
created and consequently, tests cannot be written, which prevents the test-driven approach.
Besides, if the WSDL specification of the requested service changes, existing clients need to
be regenerated. To solve this, Rehearsal provides a feature for the dynamic generation of web
service clients. With this feature, the developer can interact with a service without creating stub
objects. Given a web service interface (in WSDL), its operations can be requested dynamically
as depicted in Figure 3]

@Test
public void testname() throws Exception {
String wsdlUri = "http://localhost:1234/storeWS?wsdl";

WSClient client = new WSClient(wsdlUri);
Item response = client.request("getPrice", "milk");

assertEquals((Double)2.50, response.getChild("price").getContentAsDouble());

Figure 3. Example of dynamic request to a Soap service using the WSClient

In Figure [3| the service under test does not exist yet. But, using Rehearsal, one can
apply a test-driven approach for implementing it. Thus, in the test, the developer can specify
the service endpoint (WSDL URI), the operation name (getPrice), and signature (receive a
String and return a Double object). After writing the tests, the developer must code the service
to make the tests pass. One can notice that even if the developer is involved in a scenario
similar to S2, in which the roles are already defined, Rehearsal can still be used, in this case,
with fest-after development approach.

Phase 2: Integration of services to compose the choreography roles

After the services are created (or adapted) and tested properly, they are integrated to compose
a choreography role. As explained in Section (3} at this point, a role consists of an executable
process defined by a service or a set of services. When a set of services is needed for the
composition, third-party services may not be available at development-time. To solve this
integration problem, Rehearsal provides a service mocking feature where real services (e.g.,
third-party ones) can be simulated.

In the example in Figure [we are mocking a real registry service, which is published
in the URI specified in line 12. For playing the Supermarket role (see Figure [I)), the service
must register its endpoint into a Registry service. If this service is only available in the produc-
tion environment, it can mocked as presented in Figure 4 Thus, we can simulate the service
registration for validating the role implementation in the testing environment. Thus, in lines
14-15, we instantiate a WSMock object; in lines 17-18, we define the response this object
must provide for any parameter received. Finally, in line 19, we start the mock, and its WSDL
interface is published on the URI: http.://localhost: 1234/registryMock ?wsdl.

After all real dependencies have been mocked, when it is needed, the services can be
integrated to compose a choreography role. To assess the messages exchanged among the

6

10 @Before

11 public void publishSMRegistryMock() throws Exception{

12 String realUri =" http://a-remote-host:8084/petals/services/smregistry?wsdl”;
13

14 WSMock registryMock = new WSMock("registryMock", realUlri);

15 registryMock.setPort("1234");

16

17 MockResponse response = new MockResponse().whenReceive("*").replyWith("registered");
18 registryMock. returnFor("addSupermarket", response);

19 registryMock.start();

20 }

21

22 }

Figure 4. Example of web service mocked with WSMock

services within the executable process, Rehearsal provides a message interceptor feature. Us-
ing this feature, tests to validate this message exchange can be written before the developer
performs the real integration.

15= @Test

16 public void shouldSendTheCorrectEndpointToRegistryWs() throws Exception {
17 Service registry = new Service();

18 registry.setWSDL("http://localhost:1234/registryMock?wsdl");

19

20 // Create aninterceptor for the registration process

21 Interceptor registration = new Interceptor();

22 registration.intercept().to(registry);

23

24 // Invoke the Supermarket execution process

25 wsClient client = new WSClient("http://localhost:1234/supermarket1?wsdl");
26 client.request("registertSupermarket”, "http://localhost:1234/storewS?wsdl");

27
28 // Validate the messages intercepted
29 List<ltem> messages = registration.getinterceptedMessages();

30 Item msgintercepted = messages.get(0).getChild("endpoint");
31 assertEquals("http://localhost:1234/storewS?wsdl", msgintercepted);
32}

Figure 5. Example of message intercepted using the Message Interceptor

Figure [5]illustrates a test case that validates the integration of the service assessed on
Figure [3) with the Registry mock service (see Figure) by analyzing the messages exchanged
during their interaction. First (lines 17-18), a Service object is created to represent the mock
created previously. Then, on the lines 21-22, we define a message interceptor to intercept all
messages sent to the mock service. To trigger the messages exchanged within the executable
process, or in other words, the role implementation, we invoke the process, which is exposed
as a service in lines 25-26. Finally, we retrieve and validate the messages intercepted in lines
29-31.

In the case of scenario S2, where the role contract is already defined in the choreography
model, the developer can use the contract as an oracle and then validate his/her implementation.
The idea is that the role implemented must have the same interface and behavior of the oracle.
Rehearsal provides a feature for applying compliance tests which aim at verifying if a service is
playing the role properly based on the interface of this oracle contract. As depicted in Figure[6]

7

an oracle specification (line 35) is defined and the service implemented is assessed based on this
specification. This assessment is performed by the assertRole assertion, which verifies if the
service interface matches with the oracle interface. Then, the test cases defined on SMRoleTest
class are applied on the service: if all tests succeed, the service is in compliance with the
role. This class consists of JUnit test cases that interacts with an endpoint which is retrieved
from the assertRole parameters at runtime. In the example, the endpoint is retrieved from the
Supermarket object. In our future works, we aim at generating this test suite automatically
from the oracle object.

33 @Test

34 public void serviceMustBeCompliantWithTheSupermarketRole() throws Exception {
35 Role oracle = new Role("supermarket”, "./roles/supermarket?wsdl");

36 Service supermarket = new Service();

37 supermarket.setWSDL("http://localhost:1234/supermarket1?wsdl");

38

39 assertRole (oracle, supermarket, SMRoleTest.class);

40 }

Figure 6. Example of compliance tests

Compliance tests assure that the implemented service plays the choreography role prop-
erly. Thus, these tests give confidence and courage to the developer: (i) integrates the new role
into the production choreography; (ii) refactors the code implemented; (iii) modifies the soft-
ware in case of requirement change.

Phase 3: Integration of roles to compose the choreography

After implementing an executable process by following the steps of the third phase, the de-
veloper can assess the integration of the developed service with the rest of the choreography.
Regarding the development scenarios (S1 and S2), the services playing the other choreography
roles may not be available at development-time. However, since the service contracts (WSDL
interfaces) are defined in the choreography models, through these contracts, the unavailable
service can be mocked following the process presented in the previous phase (see Figure [4)).

In the case of being involved in the scenario S3, the other roles do not exist at the
beginning. Thus, the developer can implement a set of roles following the steps of the third
phase by integrating the services iteratively. During this process, since the services are under
the developer control, the real services can be used in the integration assessment, otherwise,
mocks can also be used at this point.

After all dependency problems have been overcome, the integration among the services
is performed, and the external messages exchanged are intercepted and then validated. This
process is similar to the process described in the last phase (see Figure[S). However, this time,
the messages that must be intercepted and validated are the ones specified in the choreography
global model, and not the internal ones. In the example depicted in Figure (1, the messages
exchanged among the roles Customer, Supermarket and Shipper must be validated.

Phase 4: Acceptance and scalability testing

To complete the overall process, the choreography must be assessed taking into account proper-
ties that affect directly the end-user. Thus, acceptance and scalability assessments are applied.

The first one focus on executing the choreography features to validate its functional behavior
from the end-user point of view. The second assessment aims at investigating the choreography
performance by analyzing how scalable it can be.

Acceptance testing

Differently from others testing strategies, acceptance tests verify the behavior of the entire
system or complete functionality. From the point of view of an end-user, the choreography
is available as an atomic service. Thus, the acceptance test validates the choreography as
a unit service, testing a complete functionality. In such context, this type of test is similar
to the approaches of unit tests and WSClient (see Figure [3) can also be used for testing the
choreography.

Scalability testing

An application is scalable if it achieves the same performance by increasing the architecture
capability with the same proportion of the problem size increase. Rehearsal provides the Scal-
ability Explorer component that assists the developer to verify the choreography scalability
for future improvements. The developer must apply the following steps to assess a system
scalability:

1. Choose the variables that define the problem complexity (e.g., number of requests per
second), the performance (e.g., average response time), and the software architecture
(e.g., number of nodes of a role);

2. Define the functions of the complexity size of the problem, performance metric, and

the architecture capability;

. Choose initial values for these variables;

4. Execute the application with these initial values for obtaining the initial value of the
performance metric;

5. Execute multiple times with the same process and collect the performance metric for
each execution;

6. Analyze the performance metric.

oY)

The steps 4 and 5 are automated by the Scalability Explorer. It also assists the devel-
oper in the Step 6 by illustrating the performance metrics obtained. In the steps 1 to 3, the
developer specifies a method using the Java Annotation @ScalabilityTest with the parameters:
steps and ScalabilityFunction. The first parameter defines how many times the method will
be executed. The ScalabilityFunction parameter defines how the method parameters with the
@Scale annotation will increase at each execution.

Figure [/|illustrates an example of scalability test for the choreography. In the line 12,
we specify the @ScalabilityTest annotation with the number of steps that the framework will
execute increasing the parameters with @Scale annotation (requestPerSecond and numberN-
odes) linearly for each execution.

The requestPerSecond parameter represents the complexity of the problem: if it in-
creases, the complexity size of the problem increases. The numberNodes parameter improves

9

10 public class ScalabilityExplorerTest {

11

12- @5ScalabilityTest(scalabilityFunction=Linearlncrease.class, steps=8)

13 public List<Long> verifyScalabilitywithSupermarkets(@Scale int requestPerSecond,

14 @Scale int numberOFfNodes, Item itemList)
15 throws Exception {
16

17 WSClient client = new WSClient("http://localhost:1234/customer?wsdl");

18 increaseNumberOfNodesOfCustomerTo(numberOfNodes);

19 List<Long> responseTime = client.multipleRequest("getPriceOfProductList", itemList, requestPerSecond);
20

21 return responseTime;

22)

Figure 7. Example of scalability tests

the architecture of the Customer role, specified at line 18. If we increase the number of nodes,
we improve the architecture.

Since the framework increases both with the same proportion, the performance metric
is expected to be constant. The response time, which is the performance metric, for each
request is returned as a list (line 19). The Scalability Explorer component collects these lists
and calculates the mean and standard deviation for each execution. Finally, the developer can
analyze a performance metric graph plotted by the component to verify if it stays constant.

After applying this assessment, the developer can verify how much the choreography is
scalable. If it is not scalable enough, the developer can refactor the choreography architecture
and analyze again with the same scalability test to verify if the desired scalability was achieved.

5. Conclusions and Ongoing work

Rehearsal framework is still under development. We are working on the message intercep-
tor and scalability testing features. To validate the framework features, we intend to apply
quantitative assessments to evaluated aspects, such as time overhead and test case verbosity.
In particular, to the scalability testing features, currently, we have a software prototype that
consists of the input for defining the final scalability testing API of Rehearsal. To validate our
prototype, we aim at assessing the scalability of a test bed choreography we developed.

Regarding the methodology proposed, we intend to apply an experiment involving
Computer Science students developing a web service choreography. The goal is to evaluate
the user acceptance and the framework effectiveness as well the difficulties faced by the stu-
dents in the process. To achieve that, a group of users would receive initial and basic training
on our testing framework. Possibly, a preparatory short course about choreographies and web
services would also be performed. After this training stage, the students must develop sim-
ple choreography requirements, possibly a role, using our TDD methodology. At the end, we
would analyze the test cases produced as well questionnaires answered by the participants.

10

[

[BBRWO09]

[

[

[BLKI11]

[
[

[

[
[
[
[

Ast03]

Bec00]

Bec03]

Fowl11]

FPO9]

GWO03]

Jef]

Mes07]

NBO006]
Pel03]

References
D. Astels. Test-Driven Development: A Practical Guide. Prentice Hall PTR, July 2003.

Adam Barker, Paolo Besana, David Robertson, and Jon B. Weissman. The benefits of service
choreography for data-intensive computing. In Proceedings of the 7th interna-
tional workshop on Challenges of large applications in distributed environments,
CLADE ’09, pages 1-10, New York, NY, USA, 2009. ACM.

Kent Beck. Extreme programming explained: embrace change. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

Kent Beck. Test-driven development: by example. Addison-Wesley, Boston, 2003.

Felipe Besson, Pedro Leal, and Fabio Kon. Baile project: Verification & validation(v&v) of
choreographies. Available on: http://ccsl.ime.usp.br/baile/VandV, 2011.

Martin Fowler. Test-Driven Development. Available on:
http://www.martinfowler.com/bliki/TestDrivenDevelopment.html, 2011.

Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided by Tests. Addison-
Wesley Professional, 1 edition, 2009.

Boby George and Laurie Williams. An initial investigation of test driven development in indus-
try. In SAC ’03: Proceedings of the 2003 ACM symposium on Applied computing,
pages 1135-1139, New York, NY, USA, 2003. ACM.

Ron Jeffries. What is extreme programming?
Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley, May 2007.
Evaluating the efficacy of test-driven development: Industrial case studies, volume 2006, 2006.

Chris Peltz. Web Services Orchestration and Choreography. Computer, 36:46-52, October
2003.

11

	Introduction
	Test-Driven Development (TDD)
	Web Service Choreographies
	Methodology Proposal
	Conclusions and Ongoing work

