A framework for automated testing of web service choreographies

Felipe Meneses Besson

Masters thesis proposal submitted to the

Institute of Mathematics and Statistics of the
University of Sao Paulo

Qualifying Examination
Masters in Computer Science

Advisor: Prof. Fabio Kon

During the development of this work the author has received funding from HP Brasil under the
Baile Project and from the European Community’s Seventh Framework Programie
FP7,/2007-2013 under grant agreement number 257178 (project CHOReOS - Large Scale
Choreographies for the Future Internet).

Sao Paulo, August, 2011

A framework for automated testing of web service choreographies

This is the version submitted for the qualifying examination of

Felipe Meneses Besson.

Examination Committee:

e Prof. Fabio Kon (advisor) - IME-USP.
e Prof. Marcio Eduardo Delamaro - ICMC-USP.

e Prof. Marco Aurélio Gerosa - IME-USP.

Abstract

Web services are loosely-coupled software components designed to support interoperable machine-
to-machine interaction over the Internet. To achieve such interoperability, web services are accesible
through W3C web standards, independently of which language, operation system, or hardware plat-
form they are developed. Due to these characteristics, simple web services can be combined in more
complex ones. There are two main approaches for composing services: orchestration and choreogra-
phies. In an orchestration, a central node (the orchestrator) coordinates the flow of information
from other participating services. Although straightforward and simple, its centralized nature leads
to scalability and fault-tolerance problems. As a solution, choreographies have been proposed as
decentralized and scalable solutions for composing web services. Nevertheless, inherent character-
istics of SOA such as dynamicity, third-party and governance issues, and the decentralized flow of
information, make the automated testing of choreographies difficult.

The goal of this research is to develop a framework for automated testing of choreographies
to support Test-Driven Development (TDD) of choreographies. This framework provides a set of
features to assist the choreography developer during choreography testing. Through this framework:
(i) the elements (services, roles, messages) of a choreography can be manipulated as Java Objects;
(ii) web service operations can be invoked dynamically; and (iii) messages exchanged in the chore-
ography can be intercepted and analyzed. Since real choreographies involve multiple internal and
external services, the framework also provides mechanisms for mocking web services or invoking
them in their real environments. With this set of features, we intend to support choreography test-
ing by providing the needed mechanisms for automating the testing of (i) atomic web services (unit
testing); (ii) their integration in the choreography (integration testing); and then, (iii) a part or the

whole choreography (acceptance testing).

1ii

Contents

v

1 Introduction 1
1.1 Motivation L 2
1.2 Goals o e 2
1.3 Document organizationo 3

2 Conceptualization and terminology 4
2.1 Verification and Validation (V&V) o oo 4
2.2 Software testing L 4

2.2.1 Testing strategieso 4
2.2.2 Testing techniques L L Lo 5
2.2.3 Performance and scalability testing L.)
2.24 Online vs Offline testing o oL 6
2.25 Testdouble 6
2.2.6 Test-Driven Development (TDD) 6
2.3 Web service compositions e e 7
2.3.1 SOA roles and operations Lo 7
2.3.2 Webservices L 7
2.3.3 Orchestration vs. Choreography 8
2.4 Alternatives for web service composition testing 0. 9

3 Related work 10

3.1 Testing of atomic web services Lo 10
3.1.1 Serviceclient e 10
3.1.2 Services registryo 12
3.1.3 Service providero 13

3.2 Testing of web services choreographies 13
3.2.1 Before enactment oL L 13
3.2.2 After enactment L 14

4 Rehearsal: Our testing framework 16

4.1 Supported testing strategies Lo 16
4.1.1 Unit testing Lo 16
4.1.2 Integration testing 17
4.1.3 Acceptance testing Lo 18

4.2 Choreography development process e 18

4.3 Framework features

4.3.1
4.3.2
4.3.3
434
4.3.5

4.5.1

4.5.2 Testing of Choreographies

4.6 Partial
4.6.1

5 Work plan

5.1 Missing features
5.2 The framework validation
5.3 Schedule

Bibliography

Dynamic generation of web service clients
Abstraction of choreography

Message interceptor

Service mocking

Scalability testing support
4.4 Architecture
4.5 Comparison with related works

Testing of atomic web services

results

Dynamic generation of web service clients

CONTENTS v

Chapter 1

Introduction

Service-Oriented Computing (SOC) is now considered the new generation of distributed com-
puting, being widely adopted. SOC aims to facilitate the development of distributed systems by
providing mechanisms to overcome issues such as the lack of interoperability, high cost and com-
plexity of integration. In such context, Service-Oriented Architecture (SOA) consists of an ar-
chitectural model that guides the SOC paradigm, using web services as the building blocks of
applications [Hew09]. Web services are loosely-coupled software components designed to support
interoperable machine-to-machine interaction over a network. Due to these characteristics, simple
web services can be combined to create more complete web services. From an external point-of-
view, compound services are accessible as simple ones, and can also be composed in new services,
recursively. The ability to effectively compose services is a critical requirement for achieving some
of the most fundamental goals of Service-Oriented Computing [Erl07]. Thus, two main approaches
have been proposed for composing web services: orchestrations and choreographies [Pel03].

In an orchestration, a central node (the orchestrator) coordinates the flow of information from
other participating services. Although straightforward and simple, its centralized nature leads to
scalability and fault-tolerance problems. As an alternative, choreographies have been proposed as
decentralized and scalable solutions for composing web services. Each choreography participant
plays a specific role, which determines its behavior in the choreography. Then, the interaction
among the nodes is collaborative with no central point coordinating the information flow. As a
result, choreographies are a good architecture for fully decentralized workflows [BBRW09].

Patient care in medical centers is an example of fully decentralized flow that can be modeled
as a choreography [BPaRG09]. Normally, patient care involves the following stages: the patient
registration, triage and examination, a medical appointment, exams, and medication. Fach of these
stages can be executed or supported by web services that can interact with each other to implement
the entire workflow. In an orchestration, a central service must indicate which stage a patient must
follow during the attendance. Thus, the orchestrator must deal with parallel requests since many
patients are attended in parallel in a daily routine of a medical center. Besides, this central service
must interact with services used by physicians, attendances and nurses that may need to retrieve
information about the patient care (also in parallel).

Given the number of parallel interactions, the orchestrator can became a bottleneck of the
system. In this scenario a choreography seems to be a more adequate approach for modeling the
distributed flow. Each participant (e.g., patient, nurses, and physicians) can be modeled in a service
that plays a specific role. As the patient progresses to a stage, the next role receive a message from
the actual node to continue the attendance. Differently from orchestrations, the flow is decentralized,
there is no central node coordinating and bypassing all the messages. For example, after the triage
and examination have been done, the service playing the nurse role notifies the services playing the
physician role. The later retrieve the triage results and let it available for the physician (human) to
consult it.

In spite of all the benefits and advantages of web service choreographies, the automated testing
of choreographies is challenging. The inter-organizational integration of applications promoted by

1.2 MOTIVATION 2

SOA can also bring restrictions such as the impossibility to exercise third-party services in testing
mode. As a consequence, services cannot be tested in isolation, before being integrated in the
choreography. Moreover, some inherent characteristics of choreographies such as dynamicity and the
decentralized flow of information, hamper the monitoring and interception of messages exchanged
by the nodes of a choreography. Nevertheless, during choreography development, analyzing the
messages exchanged by services can be an important mechanism for validating the integration
of services. Due to these issues there is a lack of tools and techniques for automated testing of
choreographies [BMS07, CDP09].

1.1 Motivation

In spite of some standards such as Web Service Choreography Interface (WSCI)!, Web Ser-
vices Choreography Description Language (WS-CDL)? and Business Process Model and Notation
(BPMN2)? have been proposed for modeling choreographies, none of them have been defined as a
stable solution. Consequently, the development process, including the testing activities, of chore-
ographies is not disciplined. Many real choreographies are implemented using a combination of
standards and ad hoc solutions.

Some tools, such as SoapUI* have been developed for testing atomic services. Since composed
services are accessible as atomic services (from an external point of view), these tools can be used
to validate the choreography as a service. Nevertheless, on this approach, the choreography is taken
as a black-box, preventing the validation of services integrated inside the choreography, as well
as the flow of information inside the choreography. Since standard choreographies are specified by
global models before their deployment, some testing approaches [Pi410, WZZ 10, ZPX 10| have
been proposed for validating these models. These approaches can detect design problems, using for
instance, simulation. However, we believe that some failures and errors can be only detected by
executing the services and the choreography.

In spite of their potential, the lack of stable standards, and the absence of more adequate testing
tools, are obstacles for choreographies being widely adopted. Thus, efforts like the proposed testing
framework to apply Test-Driven Development (TDD) of choreographies have a good potential to
facilitate the choreography development and to leverage its adoption.

1.2 Goals

The main goal of this work is to develop a framework for automated testing of web service chore-
ographies to support TDD (Test-Driven Development) [Bec03] of choreographies. During choreog-
raphy development, the proposal framework will provide mechanisms for automating the testing of
(1) the candidate web services (unit testing); (2) their integration in the choreography (integration
testing), and (3), a part or the whole choreography (acceptance testing). With this framework,
the software developer can apply automated tests on running choreographies, as well as on chore-
ographies developed from scratch. To achieve our goal, the proposed framework must provide the
following main features:

o Abstraction of choreography: The elements of a choreography such as roles, services, and mes-
sages exchanged must be represented by Java® objects. Through these objects, the developer
will interact easily with the choreography elements for writing automated tests;

e Dynamic generation of web service clients: Given a web service URI, the framework must
provide mechanisms for invoking the service operations dynamically.

'WSCT: http://www.w3.org/ TR /wsci
*WS-CDL: http://www.w3.org/ TR/ ws-cdl-10
3BPMN2: http://www.omg.org/spec/ BPMN /2.0
“SoapUT: http://www.soapui.org

5Java: http://www.java.com/en

http://www.w3.org/TR/wsci
http://www.w3.org/TR/ws-cdl-10
http://www.omg.org/spec/BPMN/2.0
http://www.soapui.org
http://www.java.com/en

1.3 DOCUMENT ORGANIZATION 3

o Message Interceptor: To apply integration tests, the framework must intercept, and then,
collect the name and the content of messages exchanged among the services the developer
wishes to the monitor;

o Service mocking: The framework must create a double service [Mes07] (e.g., a mock). Through
this object, all web service operations can be mocked. This feature is particularly important
when production web services cannot be tested (e.g., because of third-party rules) or when a
specific scenario needs to be simulated.

o Scalability testing support: The framework must support scalability testing. The goal is to
assess the choreography performance as long as the work load increases. To achieve that,
we aim at providing features for: (i) applying multiple and parallel requests to services; (ii)
measuring the response time of these services and (iii) creating more instance of existing
services.

1.3 Document organization

In Chapter 2, we present the main concepts and terminologies used in this research. In Chapter 3,
we discuss related works on automated testing of atomic web service and web services compositions.
In Chapter 4, we explain the main features of the proposed framework. Finally, in Chapter 5 we
present our work plan and schedule.

Chapter 2

Conceptualization and terminology

Software testing is a broad area of software development. Depending on the software community,
the software development model adopted, and other context issues, terms and concepts related to
software testing can be understood differently. For this reason, in this chapter, present the main
concepts and their respective meanings in the context of this work.

2.1 Verification and Validation (V&V)

Verification and Validation corresponds to a disciplined approach which aims to ensure quality
during the whole software development [AM04]. On the one hand, Verification covers the activi-
ties to ensure that the software is built correctly regarding pre-defined standards and processes, or
imposed design specifications. On the other hand, validation covers the activities that check if the
software meets the user requirements. A wide set of activities belongs to V&V, such as formal tech-
nical reviews, quality and configuration audits, performance monitoring, simulation, documentation
review, database review, algorithm analysis, and software testing.

2.2 Software testing

In this section, we introduce all software testing background related to this research. Despite
this introduction refers to testing of traditional systems (client-server model), its understanding
makes needed for the testing approaches of web services choreographies presented.

2.2.1 Testing strategies

During a software development project, different testing strategies can be applied depending on
the stage of development:

Unit tests focus on the small units of software present in the source code. These tests verify the
behavior of a single class or method, and are not directly related to the requirements of the project,
except when a key chunk of business logic is encapsulated within a specific class or method [Mes07].

Acceptance tests verify the behavior of the entire system or a complete functionality. They typ-
ically correspond to the execution of scenarios present in the use cases, features, or user stories
specified by the customer. They do not depend on the implementation. Normally, they are slower
than the other test strategies because they exercise all layers of the system, accessing the real com-
ponents (mock objects are not used) [Mes07].

Integration tests lie between these two previous techniques and aim to solve the problems pro-
duced when unit tested components are integrated. Their goal is to verify the unit interfaces and

2.2 SOFTWARE TESTING 5

interactions. A set of integration tests must be built to explicit the goal of exercising these inter-
actions and not the unit functionalities [Del97|. In this context, integration tests are also called
component tests, which aim to verify components consisting of groups that collectively provide
some service [Mes07|. There are some strategies to perform this integration [Pre01]:

e Top-down: the integration is performed from the main module. Initially, all components that
this module depends on are mocked or stubbed, then, these dependencies are replaced incre-
mentally by its real implementation until the system is totally integrated;

e Bottom-up: the integration starts in the atomic modules (i.e., components at the lowest levels
in the program structure). These components are grouped in clusters. Once all components
of a cluster are integrated, the entire cluster is integrated to other cluster.

e Big bang: all components are combined at once and tested as a whole.

2.2.2 Testing techniques

Depending on the goals of the test, availability of resources, and other factors, test strategies
are combined with different test techniques. In the functional or black-box technique, the entity
(method, class, or system) under testing is considered as a complete entity and the internal structure
is ignored [Mye04]. Then, when some valid and invalid data are provided to the entity under testing,
it just verifies whether the actual results are compatible with the expected ones. During this valida-
tion, test criteria such as partitioning into equivalence classes and boundary value analysis [DM.J07]
can be used.

Since it is impracticable to apply tests to cover all the possible inputs of program, normally,
a subset containing the meaningful inputs is used in the functional test cases. This subset can
be defined by using the partitioning into equivalence classes. First, the input domain is divided
into equivalence classes. Then, at least one representative of each class is used as the test input.
This representative is equivalent to other members of its class, so it is not necessary to repeat the
test using the other members as inputs. Complementary to this test criterium, in boundary value
analysis, the values above or below the equivalence classes boundaries are tested.

In the white-box testing technique, internal structure of program aspects as data flow and
its internal logic are verified and validated [Mye04]. For this reason, this technique is also called
“structural test”.

2.2.3 Performance and scalability testing

The goal of performance testing is to apply enhancement strategies to maintain an acceptable
system performance [Ngu01|. Although the terms performance, load, and stress tests are often used
interchangeably, the following differences can be highlighted [Ngu01]:

e Load testing evaluates system performance to handle predefined load levels. Load testing
measures how long the system under test takes to perform various program tasks and functions
under normal, or predefined conditions.

e Stress testing evaluates the behavior when the system under test is pushed beyond its
specified operational limits. Normally these tests aim at evaluating the responses to bursts
of peak activity that exceed system limitations. In these situations, the goal is to determine
whether the system crashes and/or recovers gracefully.

Scalability testing is similar to stress testing since both strategies aim at assessing the system
performance in extreme situations to find out where the limits are [Liu09]. However, scalability
testing also assesses how the system can be expanded to handle the required demand (e.g., number
of users or volume of transactions). This kind of testing is important, since every business is expected
to grow with time [Liu09]. Thus, with this test strategy, it is possible to measure the processing
capability required to support the desired level of business operations.

2.3 SOFTWARE TESTING 6

2.2.4 Online vs Offline testing

Testing techniques can also be classified in online or offline testing, depending on when and where
these techniques are applied. Online testing consists of determining whether a system complies with
its intended behavior during its real life operation (i.e., in the production environment) [GGvD10].
Thus, all testing strategies and techniques, analysis (e.g., trace files), and simulations applied before
the deployment of the system in its production environment, corresponds to offline testing. Tests
invoking a system in the development or testing environment are also considered offline testing.
In the literature, online is also called runtime monitoring or “passive testing” [Ber(07|. However,
since these activities may not limit themselves to passively observe the system under test, the term
online testing can also be used for approaches that not only monitor, but also trigger proactive
actions [BAP11].

2.2.5 Test double

During software testing, often, the System Under Test (SUT) depends on other software compo-
nents (classes, databases, systems, and so on) that can not be executed in “testing mode”. Moreover,
sometimes invoking a real Depended-On Component (DOC) makes the test too slow. In such situ-
ations, the real DOC can be replace by a test double, an object that provides the same interface as
the real DOC [Mes07]. According to Meszaros [Mes07], there are five kinds of test doubles:

e Dummy: objects that are passed as arguments to a method but are never actually used.
Methods of the SUT may require objects as parameters, if neither the tests nor the SUT use
these objects, they can be dummy objects;

e Fake: objects that provide the same functionalities of the real DOC, but using a simpler
implementation. For instance, during the testing, a real database can be replaced by an in
memory database fake object;

e Stub: objects that are pre-programmed to return pre-defined answers for calls received during
the test. These answers can be defined as valid or invalid ones. The term “test stub” can be
used to mean a temporary implementation that is used only until the real object becomes
available. The goal behind the use of stub objects is to apply state validation. Thus, we
determine whether the exercised method worked correctly by examining the state of the SUT
and its collaborators [Fow07];

e Spy: stub objects that also provide mechanisms for capturing the stub answers for a later
validation;

e Mock: objects that are pre-programmed to return pre-defined values when they receive ex-
pected calls. Differently from stubs, the goal of mocking is to apply behavior verification.
Therefore, the exercised method worked correctly if the SUT made the correct calls on the
mock objects that represented its collaborators [Fow07].

2.2.6 Test-Driven Development (TDD)

Test-Driven Development is a design technique that drives the software development through
testing [Bec03, Fow11]. Basically, TDD is based on three main steps:

1. An automated test for the next small functionality to be added into the system is written;
2. The simplest piece of code possible is developed to make the test pass;

3. The old and new parts of the code are refactored to improve the quality of the code design,
and after the refactoring, the tests must keep passing.

During software development, the steps above are applied repeatedly.

2.3 WEB SERVICE COMPOSITIONS 7

2.3 Web service compositions

In the Service-Oriented Architecture (SOA) context, web services consist on the building blocks
of applications [Hew09|. Due to its interoperability characteristics, atomic web services can be
composed in more complex ones. In this section, we first present an overview of SOA describing
its stakeholders, and how web services are used in the SOA life cycle. Then, we describe the main
characteristics of web services, and two approaches for composing them.

2.3.1 SOA roles and operations

In the SOA life-cycle, different stakeholders interact with web services for developing or exe-
cuting their operations. The typical SOA triangle, depicted in Figure 2.1, illustrates the involved
stakeholders, its roles and its operations in SOA life-cycle. Once a provider develops a new web ser-
vice, its description, containing for instance a WSDL document for SOAP web services, is published
in a public or private registry of services. After the publication, clients send a query to the registry
to find the desired service. Then, the registry returns a list of service interfaces which matches
the client query. Finally, the client chooses an interface and then, can start interacting with the
provider, these latter actions are denominated binding. Both querying and binding activities can
be automated [PGFT11].

Registry

publish search

retrieve

response -
Provider | " Client

bind + invoke operations

Figure 2.1: SOA triangle of roles and operations

2.3.2 Web services

According to the W3C [BHM™'04], a web service is a software component designed to favor the
interoperable machine-to-machine communication using web protocols. Web services must be acces-
sible through an endpoint. In addition, a web service exposes an interface in a machine-processable
format for describing its operations. This interface may be specified in the Web Service Description
Language (WSDL)'. A WSDL document describes the data types and messages exchanged by the
web service operations and all needed information for binding with the web service. Based on the
web service description, other software systems interact with it exchanging messages in a protocol
such as the Simple Object Access Protocol (SOAP)?, normally using HTTP. SOAP is a protocol,
defined in XML, for exchanging structured information in a distributed and platform-independent
way.

In spite of the benefits of using SOAP and WSDL, such as interoperability and the loose cou-
pling (between a service provider and a consumer), XML manipulation raises several performance
problems. For example, the translation of the XML to corresponding memory data structures has

"WSDL: http://www.w3.org/TR/wsdl
2So0ap: http://www.w3.org/ TR /soap

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap

2.4 WEB SERVICE COMPOSITIONS 8

been problematic and is the main source of performance inefficiencies [PZ108|. Because of these is-
sues, REpresentational State Transfer (REST) or Restful web services [RR07| can be an alternative
to WSDL web services.

Initially, REST was proposed as an architectural style for building large-scale distributed hy-
permedia systems. However, because of the principles described below, REST started to be used as
web services |[PZLO0S|:

e Resource identification: a RESTful web service exposes its resources via the Internet. A
resource can be for example a book from a book seller service. Each resource contains an
identifier and it is accessible by a URI;

e Uniform interface: The operations: PUT, GET, POST, and DELETE are used for creating,
reading, updating, and deleting resources, respectively. Although REST web service can be
used with other protocols, normally its used with HTTP;

e Self-descriptive messages: a given resource has only one identifier but it can have many
representations (HTML, XML, JSON, PDF, JPEG, ...);

e Stateful interactions through hyperlinks: Every interaction with a resource is stateless,
nonetheless, using the resource identifiers, stateful interactions can be performed. Several
techniques exist to exchange state, e.g., URI rewriting, cookies, and hidden form fields.

2.3.3 Orchestration vs. Choreography

Composability of web services is one of the SOA principles [Erl07]. In such context, orchestration
and choreography have been proposed as approaches for composing web services. Orchestration
corresponds to a centralized approach where internal and external web services are composed into a
executable business process [Pel03]. Some standards such as Business Process Execution Language
(BPEL)? have been proposed for orchestrating services. In an orchestration, a central party (node)
controls the interaction flow of the other parties, unlike in choreographies, where the control is
decentralized.

A choreography is a collaborative interaction in which each involved node plays a well defined
role. A role defines the behavior a node must follow as part of a larger and more complex interaction.
When all roles have been set up, each node is aware of when and with whom to communicate,
based on pre-established messages specified by a global model [BBRW09]. Therefore, when the
choreography is started (enacted), there is no central entity driving the interaction of the whole
choreography.

According to Ross-Talbot [Rt05], a choreography is a description of a peer-to-peer externally
observable interactions that exist between the services. Differently from orchestrations, the interac-
tions are described from a global or neutral point of view and not from any one services perspective.
Thus, choreographies describe the common observable interactions (the messages flows) between
the nodes but without defining how that role will be executed. In other words, a choreography de-
fines the messages exchanged among the participating services; but it does not describe any internal
action that occurs within the participating ones. These internal actions do not directly result in an
externally visible effect such as an internal computation or data transformation [BDO].

Since orchestrations are executable processes, choreographies can be executed via distributed
orchestrations [CHO11|. This way at a high level the global interactions of many participants are
specified by the choreography model, using for instance, the languages and standards described
in Section 1.1. Then, in a lower layer, to play a specific role, a service or a set of services can be
orchestrated to deal with the message flow specified by the choreography. Figure 2.2 illustrated this
approach.

SBPEL: http://www.oasis-open.org/committees/wsbpel

http://www.oasis-open.org/committees/wsbpel

2.4

ALTERNATIVES FOR WEB SERVICE COMPOSITION TESTING

Orchestration Choreography Orchestration
Web Web
service service

9

Request purchase order _
Acknowledge

A

Accept purchase order
Acknowledge

N4

AV 4
Web

service

Web
service

Web
service

Web
service

A

Figure 2.2: Orchestration of services playing roles in a choreography [Pel03]

2.4 Alternatives for web service composition testing

An initial effort for understanding the current scenario of testing techniques for orchestrations
and choreographies was conducted by Bucchiarone [BMS07]. Later, a more comprehensive survey
to cover SOA testing was conducted by Canfora and Di Penta [CDP09|. These studies propose
alternatives adapting the testing techniques and strategies for traditional software (see Section 2.2)
to the context of web service compositions.

According to these studies, depending on the perspective and the availability of resources, dif-
ferent testing techniques and strategies can be applied. When the specification of an orchestration
is available (e.g., in a BPEL file), this specification can also be taken as the code of the orchestra-
tion (if the engine is correct). In this case, white-box, or implementation-based techniques can be
applied. For this kind of technique, mechanisms of structural testing such as control and data flow
graphs can be used, and test cases can be derived from these structures. Moreover, each service
participating on the orchestration can be tested in isolation (as a unit).

However, from the user perspective, an orchestration can be taken as a unit since only its WSDL
interface is exposed. In this situation, the process is available as a simple service. As a result,
black-box tests that can be applied for such process are equivalent to atomic services. The goal of
these tests consists on exercising the services functionalities, verifying whether they match with the
specification or the behavior expected by the customer, which are also the goals of acceptance tests.
At the choreography side, acceptance tests can be applied taking the choreography as an atomic
service. Nevertheless, if the internal representation of choreography is available, the unit tests can
be performed following the same approach defined for orchestration, i.e., each participant is a unit
to be tested. Differently from orchestration, the expected behavior for each partner is defined by
its specific role in the choreography.

Since the tests at unit level are focused on just exercising the behavior of that unit, their integra-
tion must also be exercised. However, for orchestrations and choreographies, the lack of information
about certain partners and the impossibility of exercising some third-party services make the in-
tegration testing complex. To minimize such issues, the dependent parties can be simulated. This
can be done by creating stub or mock objects for the web services that the unit under testing
communicates with.

Chapter 3

Related work

In spite of all the benefits that choreographies can bring, the testing of this kind of composition
raises new challenges. In this chapter, we present the main related works for testing web service
choreographies. These works were grouped following the classification of web services composition
testing presented in section 2.4. Thus, works related to atomic services represent unit and accep-
tance testing techniques, while those works focused on validating the internal choreography flow of
information are the basis for integration testing.

3.1 Testing of atomic web services

Considering the SOA triangle (see Section 2.3.1), different stakeholders are involved in different
phases of a SOA application life-cycle. The following works present approaches for testing atomic
web services at different stakeholder perspectives.

3.1.1 Service client

There are some works for testing web service from the client perspective. We consider that the
client role can be played by an end-user of the service, or by a developer, during the process of
integrating services. The following approaches are applied after service binding.

SoapUI. This tool [Evil0] was developed in Java and provides mechanisms for functional and per-
formance tests. From a valid WSDL (Web Service Description Language), SoapUI provides features
to build automatically a suite of unit test for each operation, and a mock service to simulate the
web service under testing. Besides, this tool can be used for deploying the mocked service, and then,
for making the WSDL interface available like the real service, but only the mocked functionalities
are invoked. Finally, SoapUI has mechanisms to measure test coverage. Despite its name suggests
a restriction to SOAP/WSDL web services, some mechanisms are provided to test other kinds of
services, such as RESTful and JMS (Java Message Service). All these features are provided by the
Open Source version (under the LGPL license!), but a commercial version of SoapUI also provides
more resources, such as support for performance tests in large scale systems.

WS-TAXI. SoapUI provides a mechanism that automatically generates a skeleton of test for the
operations presented in the WSDL. Although it automates the test creation, the produced test
cases are incomplete. As shown in Figure 3.1, input and output parameters values must be provide
manually (fields with “?” character).

WS-TAXI [BBMP09] was proposed to improve this feature. Its goal is to automatically fill these
empty fields by deriving XML instances from an XML schema. With this tool, test cases are gen-
erated from all possibilities of data combination for skeletons produced by SoapUI. In the example
presented on Figure 3.1, WS-TAXI would generate test cases (permuting the data input) to cover

"http://www.gnu.org/licenses /1gpl-2.1.html

10

3.1 TESTING OF ATOMIC WEB SERVICES 11

1 <soapenv:Envelope

2 xmlns:soapen="http://schemas.xmlsoap.org/soap/envelope/"
3 xmlns:test="http://www.example.org/test/">

4 <soapenv:Header>

5 <headerPart>?</headerPart>

6 </soapenv:Header>

7 <soapenv:Body>

8 <test:operation>

9 <test:ChoiceElem>

10 <!--You have a CHOICE of the next 4 items at this level -->
11 <fieldl>7</fieldl>

12 <field2>7</field2>

13 <field3>7</field3>

14 <!-- 0 to 3 repetitions:-->

15 <occurElem>?</occurElem>

16 <AllElem>

17 <!--You may enter the following 2 items in any order-->
18 <Al11Eleml>?</Al11Eleml>

19 <AllElem2>?</Al1Elem2>
20 </Al1lElem>
21 </test:ChoiceElem>
22 <secondInput>?</secondInput>
23 </test:operation>
24 </soapenv:Body>
25 </soapenv:Envelope>

Figure 3.1: Skeleton generated by soapUI [BBMPO09]

all possibilities of options (lines 09 — 22). For instance, for the skeleton of Figure 3.1, WS-TAXI
could generate a test cases permuting which option of <ChoiceElem> elements could be filled, or
other test cases could permute the occurrence of the <occurElem> element. Also, WS-TAXI could
generate test cases where the element <secondInput> could be filled or not.

TTR. This tool is specific for REST testing. TTR (Test-The-REST) [CK09| provides mechanisms
for functional testing (using the black box strategy) and non-functional testing (e.g., performance
tests). Similarly to SoapUI, this tool provides support for testing the CRUD operations over REST
service resources (see Section 2.3.2). TTR provides a script-like language for the test specification
and the execution. A TTR test case is composed of an ID, the URL of the resource, the HTTP
operation to be executed, input data, and expected output data. A test case can also be composed
of other test cases. Similarly to SoapUI, test cases have to be written in XML.

SOCT. In all tools above, the client can only apply black-box testing to validate the web service
operations. The goal of the Service Oriented Coverage Testing (SOCT) tool [BBEMO09] is to provide
web services with associated testing coverage information. Thus, the client receives services already
tested, instead of applying himself/herself black-box testing to validate these services. During the
development of an orchestration or a choreography, the service integrator can choose the best
services by looking at their testing coverage information. To achieve their goals, the authors of
SOCT propose an adaption of the entities which compose the SOA triangle (see Section 2.3.1). In
the proposed approach, first the provided services must be instrumented, they are called Testable
Services. Second, an entity called T'Cov provider is introduced between the testable services provider
and the client. Finally, the new SOA workflow is defined by the following steps:

1. the SOCT Tester, which can represent the client, sends a “start a testing session” message
and the test to the desired Testable Service (TS);

2. the test is executed in the TS provider, which sends a log with the coverage data to the
Coverage Collecting Service (CCS), an internal service of TCov provider;

3. after the testing session has been finished, the SOCT tester invokes the Coverage Reporting
Service (CRS), another internal service of TCov to retrieve the coverage data.

3.1 TESTING OF ATOMIC WEB SERVICES 12

Other software tools: There are many software tools for testing web services at the client per-
spective. In Table 3.1, we present some studied tools with their vendors, URL, and types of license.

| Test Tool [Vendor [URL [License ‘

GH Tester Green Hat http://www.greenhat.com Proprietary
HP Service Test HP http://www.hp.com Proprietary
Lisa iTKO http://www.itko.com Proprietary
Matador Tech Tester | Matador Tech Corp http://www.matadortech.com Proprietary
SilkTest Borland http://www.borland.com/us/products/silk/silktest | Proprietary
RESTClient - http://code.google.com/p/rest-client Apache 2.0
REST-assured Jayway http://code.google.com/p/rest-assured Apache 2.0
SoapSonar CrossCheck Networks | http://www.crosschecknet.com Proprietary
SOATest Parasoft http://www.parasoft.com Proprietary
TestMaker PushToTest http://www.pushtotest.com GPL

Weblnject Corey Goldberg http://www.webinject.org GPL

Table 3.1: Web Services Testing tools

3.1.2 Services registry

The following works describe approaches for applying automated online testing within the ser-
vice registry.

Audition framework: This work was initially proposed in the PLASTIC (Pervasive and Trustwor-
thy Network)? project, and later on, in the TAS? (Trusted Architecture for Securely Shared Services)
project. The goal of TAS? is to provide a trustworthy infrastructure for web services and users to
exchange personal data information. The Audition Framework [BDAP09] consists of a framework
for validating the TAS? web services to guarantee the trustworthiness of the participating services.
To assure secure personal data information exchange, all services must provide the functionalities
they are supposed to, and also implement all authentication aspects required by TAS3. Through
the Audition framework, before being allocated on an Audition Service Registry (ASR), the services
are audited. First, ASR creates on-the-fly testers for each service being registered. Then, the ASR
creates and assigns assertions for the test cases that will be performed. The assertions certify that
a given actor is playing a given role into the testing choreography. Finally, the tester invokes the
service functionalities (online testing) and the ASR collects the service replies. If the replies match
the expected results, the service is accepted, otherwise, it is denied. Once the auditing succeed, the
ASR indexes the service into the directory service and a testing certificate will be associated with it.

(role) CAST: This work consists of the implementation of the online testing architecture proposed
by the Audition Framework described above. Within a service federation, a network of services from
different organizations, roleCAST (ROLE CompliAnce Service on-line Testing)? [BAP11] proposes
mechanisms for validating authentication, authorization, and identification in the federation. It is
achieved by the entities Test Driver and Test Robot. The goal of the Test Driver is to configure
and to execute Tester Robot instances. An instance of a Tester Robot is in charge of:

1. loading test cases for a Test Cases Repository;

2. validating if a web service is allowed to join the federation by checking its identification
information with an id provider (through a secure Soap channel);

3. making a real request to the service under testing;

4. verifying the test case results with an Oracle;

2PLASTIC: http://www.ist-plastic.org
3roleCAST: http://labsewiki.isti.cnr.it /labse/tools/rolecast

http://www.ist-plastic.org
http://labsewiki.isti.cnr.it/labse/tools/rolecast

3.2 TESTING OF WEB SERVICES CHOREOGRAPHIES 13

5. saving these results in a Test Results Repository.

To generate test cases automatically, role(CAST) provides mechanisms for creating Test Drivers
by deriving test cases from UML diagrams.

3.1.3 Service provider

Before publishing and providing a service, a service developer can apply unit and acceptance
tests using a development or even the production environment. In the approach proposed by Jia
Zhang [Zhall], the tests are triggered by an external entity but they are executed within the service
provider. In her work, Zhang proposes an approach for automated testing of atomic web services
using a mobile agent-based infrastructure. A mobile agent refers to a composition of software and
data that is able to travel from a computer to another over a network and autonomously and
automatically continue their execution on the destination computer. Thus, the main idea is to use
agents for decreasing the costs of communication that is inherent for web service on-line testing,
mainly in the case of performance testing.

Instead of launching a suite of test cases (invoking the web services using Soap) and receiving
each test result from the client side, which is a common practice used, for example in SoapUI, the
idea is to send the test cases to a mobile agent placed at the web service server. Then, this agent
executes all the tests and sends the results back to the client. This framework is built with the tools
HP LoadRunner [HP11] and IBM Aglet [IBM11]. The former tool is an environment for automating
the testing of systems in general, not only web services. The latter is an open source library for the
development of mobile agents in Java.

3.2 Testing of web services choreographies

The related works presented previously are focused on testing atomic web services, the following
related works propose specific approaches for automated testing of choreographies. We only present
those testing approaches in accordance with the scope of our main goals (see Section 1.2). Sys-
tematic reviews such as [PGFT11, RPIT11] presented more works related to testing of web service
compositions.

3.2.1 Before enactment

In this section, we present related works that provide mechanisms for testing a choreography
before its enactment. Thus, the approaches proposed by these works are not applicable to a running
choreographies.

PI4SOA: With this software tool [Pi410] is possible to test the interactions among participants of
a choreography from a global model specified in WS-CDL (Web Service Choreography Description
Language). Essentially, the purpose of Pi4SOA is modeling choreographies in WS-CDL by produc-
ing the global model and then a BPEL specification for each participant describing its role in the
modeled choreography. Based on some components such as partners, roles, services, and interactions
(message exchanges), the choreography is modeled by dragging and dropping these components in
an Eclipse-based IDE. After modeled, it is possible to validate the flow among the web services by
simulation, which is not performed using real services. This way, at design time, this tool provides
mechanisms to verify the global model specified in WS-CDL.

CDLChecker: The main goal of this tool consists on validating and simulating choreography
models. CDLChecker [WZZ"10] is an Eclipse plugin for checking a choreography global model
written in WS-CDL to ensure the quality of its design. The tool is supported by a simulation
engine that parses this model into a data-object structure that stores the data, interactions, and
the flow of information contained in the model. Using these stored elements, the activities described

3.2 TESTING OF WEB SERVICES CHOREOGRAPHIES 14

on the model are exercised by simulation to validate the dynamic behavior of the choreography.
Besides, CDLChecker provides a module to apply static validations on the choreography model. This
module applies relational calculus to validate the WS-CDL specification. All constraints between
the choreographies nodes are checked in a static way. The goal of this module is to facilitate the
specification design, detecting faults as soon as possible.

Later, based on the simulation engine, the authors developed a framework for automatically
testing input generation for WS-CDL documents [ZPX"10]. A symbolic execution technique is ap-
plied to generate test inputs while assertions, introduced in the WS-CDL documents, are treated as
the test oracles. According to Sen [SMAO5], in symbolic execution, the program is executed using
symbolic variables in place of the concrete values for inputs. Each conditional expression in the pro-
gram represents a constraint that determines an execution path. The goal is to generate concrete
values for inputs to exercise different paths. In this work, choreography models are simulated using
the generated test inputs and they are validated in conformance with the pre-defined assertions.

3.2.2 After enactment

The following works propose testing approaches applicable for a running choreography, not de-
pending on whether it is running on a development, testing, or production environment.

BPELUnit: Mayer and Liibke proposes an architecture for creating BPEL automated testing
frameworks. This architecture is divided into four layers [ML0O6|. The Test specification layer de-
scribes how the tester will express the tests. Two extreme techniques are proposed: (i) data-centered
approach, which consists of the validation of data structures, for example, a predefined SOAP mes-
sage is compared to the one sent by the process under test (PUT); and (2) logic-centered approach,
in which a programming language is used to describe all test logic.

The Test organization layer characterizes the tests arrangement. An approach can consist on
grouping tests in test suites to assist the developer usage. Tests specifications are executed by a
framework by creating a wrapper around the PUT to validate the PUT outputs and send pre-
defined inputs. It can be achieved by using two different approaches. On Simulated testing, the
BPEL process is simulated in a controlled environment assisted by an engine to perform debugging,
control outputs and simulate inputs. The Real-life testing approach actually deploys the process
and replaces the real web service partners with mocks. The last layer (Test Results) is responsible
for gathering the results and statistics obtained and presenting them to the end-user.

Based on the architecture described above, Mayer and Liibke developed the BPELUnit frame-
work. The developer specifies the test in XML. To allow fast testing, SOAP details received and
sent by the PUT are hidden from the developer. The framework supports specification of three
interaction types with the PUT: one-way, two-way synchronous, and two-way asynchronous. On
the organization layer, besides grouping the tests cases, it is mandatory to have the setup and
teardown methods to set up and later shut down the web service partners and the PUT itself.
As previously mentioned, all the choices on the execution layer depend on the used BPEL en-
gine. BPELUnit supports this diversity with the development of adapters for each BPEL engine.
It uses the real-life approach that deploys the application PUT, executes the tests, and undeploys it.

An Online testing application: Greiler proposes a software application for detecting faults
during a dynamic reconfiguration of a service composition [GGvD10] . The goal is to apply online
testing to detect five types of faults:

e Publishing: incorrect service description, or deployment;
e Discovery: discovering no service, or the wrong service;

e Composition: missing or incompatible components (integration faults);

3.2 TESTING OF WEB SERVICES CHOREOGRAPHIES 15

e Binding: binding denied, or referenced to a wrong service;

e Execution: service crashed, or incorrect results.

During an online reconfiguration, the service to be integrated (new service) is deployed, in the
production environment, in parallel with the old service. In this approach, the service implementa-
tion is not checked against its own specification (interface), but against the expectation of another
requesting service. Each service, including the new service, contains a test suite to assess the func-
tionalities of its required services. Before being published and integrated, the test suite of the new
service is executed in three steps. First, discovery tests are applied to check whether all required
services can be discovered in the registry. Second, binding tests are applied to check whether the
required services can be bound, and to validate their interfaces. Finally, composition tests execute
the required services to validate the message exchange. If all tests pass, the new service is published
and can replace the old one.

According to Greiler, specially during online testing, the services must be aware that they are
being tested and test activities must be isolated. Thus, in this approach, the services are deployed
in two forms: operational and testable. The operational service responds to the real requests in the
composition. The testable service extends the operational service by inheritance or delegation and
provides mechanisms for other services to test the service. To validate this approach, a software
prototype* was developed based on the Open Services Gateway Initiative (OSGI)® SOA framework
for publishing and deploying the services.

“Online tool: http://swerl.tudelft.nl/bin /view/MichaelaGreiler/OnlineTesting
SOSGTI: http://www.osgi.org

http://swerl.tudelft.nl/bin/view/MichaelaGreiler/OnlineTesting
http://www.osgi.org

Chapter 4

Rehearsal: Our testing framework

This proposed framework is part of the CHOReOS! and Baile? projects. The goals of these
projects are to study, to develop, and to use web service choreographies in large-scale environments,
in particular, those related to Cloud Computing. More specifically, for both projects, this framework
belongs to the research lines related to Verification and Validation (V&V) of choreographies. In this
context, the main contribution of this work lies on providing features for the automated testing of
choreographies at development-time.

Enactment corresponds to the term used for designating a choreography that is running. The
tests we want to provide aims at supporting the development (construction) of the choreography.
For this reason, during the testing activities, we can say that the choreography is being rehearsed.
Then, when all tests have passed, the final choreography can be enacted. In the following sections,
we present in detail Rehearsal: our framework for automated testing of web service choreographies.

4.1 Supported testing strategies

During the development of a choreography, Rehearsal will provide features for testing the entire
process of composing services. This process starts at the selection of the services that will be
integrated and ends when the entire choreography is tested. To achieve that, based on the works
presented in Section 2.4, we propose multiple levels of testing. As depicted in Figure 4.1, during
the development of a choreography (represented by the external circles), unit, integration and
acceptance strategies are applied. We describe in detail each one of these techniques in the next
sections.

O unit QO Integration

Figure 4.1: Levels of testing

4.1.1 Unit testing

Unit tests focus on verifying the behavior of small units of software, which can be a single class
or a method. In the choreography context, we consider the small unit of software as a web service,
thus, our unit tests validate the service behavior by verifying each provided functionality. To achieve
that, each functionality is verified using black-box testing. As described in Section 2.3.3, to play

!CHOReOS project: http://www.choreos.eu
’Baile project: http://ccsl.ime.usp.br/baile

16

http://www.choreos.eu
http://ccsl.ime.usp.br/baile

4.1 SUPPORTED TESTING STRATEGIES 17

a role, a node can also be a composition, for instance an orchestration of atomic services [Pel03].
By definition, an orchestration is accessible as an atomic service from a user perspective and unit
tests can be applied to validate the role behavior. In this case, a role is a unit, and we are applying
conformance tests to validate whether the role is being played correctly or not.

4.1.2 Integration testing

Integration tests aim to solve the problems produced when unit tested components are in-
tegrated. We proposed an approach for applying integration testing based on message exchange
validation. Thus, we propose two levels of integration:

e Role: during the composition of web service(s) into a role, the messages exchanged inside the
local orchestration (that defines the role) are validated;

e Choreography: during the composition of roles into a choreography, the messages exchanged
by the roles are validated.

We propose an approach for supporting both levels of integration. After a web service is inte-
grated, we verify whether the service newly integrated acts as expected. This step is achieved by
checking the messages sent by that component. For each message sent, its name, destination, and
content are compared to the expected values.

Test Code

Developer

Y

s From | To | Name | Content
A B Cc| x "Hello!"

Y

Figure 4.2: Integration test flow example

Figure 4.2 shows an example of this approach. As depicted in this figure, the developer is
integrating the A and B services. At development-time, the developer specifies in the test code
what services must be invoked as well as what messages must be intercepted and validated. In the
Figure 4.3 we present a draft version of a test code for validating the integration of the services A
and B. In this example, we want to validate the message sent from service B to C.

serviceA.invoke("x", "Hello!");

String actualContent = queue.get("B", "C", "x'");
assertEquals("Hello!", actualContent);

Figure 4.3: Test code

During the execution of this test code, in the first step of Figure 4.2, after the services deploy-
ment, the framework invokes the service A. Then, service A sends a message to service B (step 2).
Our framework collects the output message from B and stores them in a queue, this is performed

4.2 CHOREOGRAPHY DEVELOPMENT PROCESS 18

in the third and fourth steps. When the execution is over, the collected data is validated against
the expected results (step 5).

4.1.3 Acceptance testing

Differently from other testing strategies, acceptance tests verify the behavior of the entire system
or a complete functionality. From the perspective of an end-user, the choreography is available as
an atomic service. Thus, the acceptance test validates the choreography as a single service, testing
a complete functionality. In this context, this type of test is similar to unit tests using the black-box
model and there is no need to know how the system is implemented internally.

4.2 Choreography development process

As explained before, one of the goals of the CHOReOS project is to support the development
of choreographies involving thousands of users and hundreds of web services. In such context, a
developer can develop the choreography from scratch, or from an existing choreography. Since
choreographies are fully distributed, the latter scenario is more reasonable. Figure 4.4 illustrates
this scenario.

MIDDLEWARE

* create and assign roles
Elaifelis | - publish services
- intercept messages

Figure 4.4: Choreography development process

As shown in Figure 4.4, a choreography is already enacted and the developers A and B are
adding new roles on it. Both developers can interact with the choreography by using the CHOReOS
Middleware [VIGT10]. The Middleware aims at providing all the required software infrastructure
to enact and to interact with an enacted web service choreography. Thus, the developer A, for
instance, can develop and integrate the new role D by applying the actions depicted in this Figure.
Even if the choreography has been developed from scratch, the developer can also interact with
the middleware by performing these actions to build and enact the choreography. We consider as
choreography development the process composed at least of the following activities:

Adaptation or creation of web services or roles;

Integration of web service into roles;

Integration of existing or new roles to create the choreography;

Validation of a part or the entire choreography.

The CHOReOS project proposes a development process model to cover the above activities
and other ones related to the choreography specification, governance, and runtime adaptation. Fig-
ure 4.5 presents the activities, artefacts, and their relationships within the CHOReOS development
process model. Our framework can be used in combination with other development process models

4.3 FRAMEWORK FEATURES 19

but, within the CHOReOS project, Rehearsal provides features for applying TDD in the activities
highlighted (not colored in gray) in Figure 4.5.

As described briefly in Section 1.2, we aim to support Test-Driven Development (TDD) of chore-
ographies. Since our integration tests are based on messages exchange, our framework provides
features for applying TDD in the activity: “Monitoring and V&V Planning”. The V&V planning
artifacts consist of the integration tests written by the developer before the choreography imple-
mentation. Then, during the test execution, our framework monitors the messages by intercepting
and validating their contents. All test cases writing using our framework, and needed artifacts (e.g.,
files for the configuration of the development environment and servers) are part of the artifact
“Monitoring and V&V Configuration”.

Choreography Spec. Framework

Goals and Requirements .
. CTT Models and
Goals and Requirements Specification ch hy Patt Synth esl|s
Specification Framework - [WP2—Structured ML and ‘ BIERE THRRE LRI
[WP2 — Structured NL and A N [WP2]
i* based] i* based modelling]

Madel-To-Model
Transformation
[WP2— MDE technigques]

CHOReOS Reference
Architectural Style [WP1]

Service Base [WP2]

Specification

‘ CHOReOS Conceptual

Model [WP1]
Governance V&Y ' I
Framework [wpr4] SPA+SIA Choreography Model(s) ~ Service Discovery
[wpz] — [WP2—BPMN2-based] o fwesl
3 e
] -

Model-To-Model Choreography Synthesis Model
m Scalability Prediction & — Transformation - [WP2]
Analysis (SPA) [WP2 — MDE techniques]

Model(s) [WP2] i i
Procedures ‘ Service Behavioural Model
Analysis

‘ Choreography Functional and
. i non-Functional Specification

- i\}l;:;nimring al;;l 7 St[;‘hi“tvd& ‘ Run-time V&V Model(s) ‘
(€) Interdependenc WP4
\ V&V Planning y; Analvgis SIA) v [] ‘
S — Model(s) [WP2]

Design and run-time analysis Choreography
Synthesis [WP2]

'

-

Meonitoring and V&V
Configuration
[WP4]

Deployment on the

) . Synthesized realize Sub-Choreography |
. A Service —— [WP3]
Run-time Enforcement Choreography Engine

Deployed Executable
- - Choreography [WP3] _
\ Proxy/Adaptor
and V&Y [WP4] [WP3] E’\sz]

\ S Y Deployed Probes -
S e
Adaptable QoS-aware ULS choreography

Enactment

Legend - e = < —— Artefact/Activity Relationship between artefa;ts
_’/ e B " [OCESS BIOW e e e

Figure 4.5: CHOReOS development process model

During their execution, unit, integration, and acceptance tests are validated against models that
specify the choreography. Thus, these choreography models are an input for validation applied by
Rehearsal. In addition, our framework interacts with service bases and service discovery entities to
bind and invoke the services under testing. These entities are also depicted in Figure 4.5. Since our
tests are always applied in a running choreography, Rehearsal is related to the activity: “Runtime
enforcement and V&V”. However, in our case the runtime enforcement activities are applied in a
development or testing environment, and not in the final production environment.

To support these activities and other ones related to other development process models, Re-
hearsal will provide the features explained in the following sections.

4.3 Framework features

To understand how to apply the testing strategies deeply to cover the activities belonging to the
choreography development process, we developed a software prototype [BLK™11b, BLK*11a]. Our

4.3 FRAMEWORK FEATURES 20

prototype consisted of: (a) ad hoc bash scripts for choreography enactment; (b) JUnit? test cases
for applying automated unit, integration, and acceptance tests in a running choreography, and (c)
a user interaction prompt for executing the scripts and tests.

To validate our prototype, we implemented an example choreography for booking a trip using
the OpenKnowledge(OK)* framework. In this example, a user plans to go on a trip and informs
the Traveler service where and when to go. After ordering a trip through this choreography, the
user can reserve an e-ticket, and finally, confirm (book) or cancel it. To provide such features, the
Traveler service interacts with other services such as: Airline, Acquire, and Travel Agency.

The choreography participants were essentially SOAP/WSDL services and RESTful web ser-
vices. Based on the experience and results acquired from this software prototype, we derived the
main features this framework must provide to achieve our goals. These features are explained in
the next sections.

4.3.1 Dynamic generation of web service clients

For applying unit and acceptance test, we aim at providing automated mechanisms where the
developer can request service operations, and then, validate the response. During prototype devel-
opment, we identified some tools for applying that, such as: Apache Axis® and JAX-WS%. With
these tools, it is possible to create stub objects (also called clients) from a valid WSDL specification
and to make requests to SOAP services. This creation process is not totally automated, human
intervention is needed for creating and using the stub objects. Besides, if the WSDL specification
of the requested service changes, existing clients need to be generated again.

To overcome these problems, we included in our framework a feature for the dynamic generation
of web service clients. With this feature, the developer can interact with a service without creating
stub objects. Given a web service interface (in WSDL), its operations can be requested dynamically.
First, the developer provides a valid WSDL specification to the framework, as well as the operation
names and parameters belonging to the service request. Second, at runtime, the framework builds
and sends a SOAP envelope to the requested service containing the operation name and the param-
eters provided by the developer. Finally, the framework receives, from the service, a SOAP envelope
containing the response and then the content of this response is presented to the developer.

We also included in the framework a feature for supporting the interaction with REST services.
This feature facilitates the invocation of CRUD operations. After providing the URI of the REST
service, the framework assists the developer to apply the POST, GET, PUT, or DELETE operation
on the resources of the service under testing.

4.3.2 Abstraction of choreography

To facilitate the testing writing, we proposed an approach for abstracting a choreography into
Java objects. Thus, all the elements of a choreography (partners, services, messages exchanged, etc.)
may be represented by Java objects.

Given a choreography specification, with this abstraction feature, the developer can write unit,
integration, and acceptance tests for the internal elements of the choreography. An example of a
valid choreography specification can be defined by BPMN2 diagrams. Figure 4.6 illustrated a draft
version of the interface we want to provide for the developer to interact with the choreography
elements using Java objects.

As depicted in Figure 4.6, the object booktrip represents a choreography specified by the BPMN2
diagram bookAndPlanTrip.bpmn. From this object, other choreography elements such as roles, ser-
vices, and messages can be invoked for writing unit and integration tests. In addition, acceptance
tests can be applied by invoking the booktrip object as a single service. To interact with the services

3 JUnit: http://www.junit.org

“OpenKnowledge project: http://www.openk.org
® Apache Axis: http://axis.apache.org/axis

6 Jax-ws: http://jax-ws.java.net

http://www.junit.org
http://www.openk.org
http://axis.apache.org/axis
http://jax-ws.java.net

4.3 FRAMEWORK FEATURES 21

bookTrip = new Coreography(“bookAndPlanTrip.bpmn”)

?

e i ———® an s }» pea— o et |
Traveltcsecy) [, Atk). Traveltcsncy) Tranveer)

Acceptance Test

Response flight = bookTrip.requestorderTrip” “S&o
Paulo”, "Paris" "2011-02-16");

Response reservation = bookTrip.request{reserveTrip”,
flight. getAttribute"id");

Response vouchers = bookTripbookTrip", reservation.
getAttribute(id));

assertContains(ticket, vouchers);

' assertContains(staterment, vouchers);
Unit Test
Role traveler = bookTrip findRole"traveler); Interceptar.intercept fromitravelAgency) to(aifine);
Response flight = traveler.request(*searchFlight”, "Séo bookTrip.request{‘orderTrip”, "S&o Paulo", “Paris", "2011-02-16");
FPaulo” “Paris" “2011-02-16"; Response response = Interceptor.getinterceptedi essagel);

assenEquals(searchFlight”, response. getAttribute*name");
assert("0-815" flight. getAtrribute("id")); assenEquals('0-815" response. getAttribute"content™);

Figure 4.6: Abstraction of a choreography

participating in the choreography, the developer can use our feature for the dynamic generation of
web service clients from the object Role.

The test execution is then performed in two phases. During test writing (design-time) the ele-
ments specified in the test cases are not checked. Then, in the first phase of execution, all of these java
objects (e.g., a role name, endpoints, message names) are validated against the BPMN2 diagram.
As explained previously, this framework depends on other systems belonging to the CHOReOS and
Baile projects. One of the framework dependencies is the CHOReOS Middleware. Thus, on the
second phase of execution, the proposed framework will interact directly with the middleware to
invoke the operations specified by the test cases.

4.3.3 Message interceptor

To apply our approach for integration tests, the messages exchanged among the services must
be intercepted and validated, as described in details in Section 4.1.2. Our prototype supports this
approach by instrumenting the choreography under testing. Then, the messages are stored and
retrieved from a database server. In previous work [BLKT11a], we evaluated our prototype, in
spite of being efficient, we detected some the deficiencies. The instrumentation applied let our
solution coupled to the Open Knowledge framework. Moreover, the prototype has only supported
the interception of simple and short messages, basically Strings. However, in real choreographies,
more complex messages (e.g., specified in XML) are exchanged.

Our framework aims at implementing this approach. To overcome the deficiencies of our pro-
totype, we must provide features for: (i) intercepting and collecting complex messages; and (ii) re-
trieving the messages collected. The framework will implement these feature based on a CHOReOS
middleware component for monitoring messages exchange. With this component, we can monitor
the flow of messages in an enacted choreography at runtime, including content, timestamp, sender,
and recipient of exchanged messages. A draft version of the interface for intercepting and validating
the content of such messages can be seen in Figure 4.6.

4.3.4 Service mocking

The inter-organizational integration of services is one of the inherent characteristics of SOA. In
spite of its advantages, this integration also brings difficulties for testing such as the absence of a
testing environment for invoking services. Without a testing environment, some service operations,
for instance the non idempotent ones, cannot be tested completely. Since the invocation of these
operations can change the internal state of a service, the test of DELETE or POST operation of a
REST third-party service can undesirably delete or create non-authorized resources, changing the

4.4 ARCHITECTURE 22

state of the service under testing. For those services, we cannot provide mechanisms for applying
unit testing yet. Nevertheless, we aim at providing mechanisms for applying integration tests even
when these services are involved. To achieve that, we proposed the usage of mock objects (see
Section 2.2.5). This feature provides mechanisms for mocking all operations of a Soap/WSDL or
REST service that cannot be tested online.

We are also interested on implementing an embedded web services server for publishing the
mocked services. Once these services have been published, our framework interacts with the mid-
dleware to replace the real services by the mocked ones in the choreography under testing.

Obviously, the usage of mocks in the integration tests can hide web service errors that would
only be discovered by invoking the real service. We want to explore this new problem in our future
works. Finally, this feature can assist also in fault scenarios simulation. Assume a scenario where
a test case aims at assessing the impact of a specific service crash during the execution. In such
situation, a mock object simulating the crash behavior can be used instead of the real service.

4.3.5 Scalability testing support

The goal of the CHOReOS and Baile projects is to support the development of large scale
choreographies which are composed of thousand of users and hundreds of services. In such context,
the choreography should be developed to meet the required demand and scalability. For this reason,
in addition to supporting functional testing, our framework will also support scalability testing.
To assess the choreography or atomic service performance as long as the work load increases, we
aim at providing features for applying multiple and parallel requests to services and for measuring
the response time of these services. The goal is to verify whether the functional tests keep working
properly when the choreography is exposed to different levels of work loads.

To assess how the choreography can scale when its is exposed to large scale work loads, we aim at
providing a feature for creating more instances of existing services. With this feature, the developer
can dynamically create and deploy new instances of the services under testing, and then, assess
the new choreography performance. To implement that, our framework will interact with the Node
Pool Manager which is a CHOReOS middeware component for resource allocation. Through this
component, the framework can create, destroy, and deploy on a testing environment new instances
of the services under testing.

4.4 Architecture

To implement the main features presented in the previously section, we propose the following
architecture:

Execution A
—| —| «Companents 5
_ . Dynamic Client CHOReOS Middleware »
IDRE User Interface a Specification Interpreter A Generator
wCOMponent:
#COMmponents Monitoring
«CD:DZ:EI'I{» Test Case «COMpOnEnts _ B —-|= 7 Service
ML= n gend test cazes Interpreter | - ke Message T
L~ _ e Interceptor
y > sCcomponents
D USE Dynamic
/ j wCOmponerts HsE = g Recormgurator
#COMPOnEnts I A St L+ -
Test Results A Si
"3 imulator
P ECTET s wComponents = — Use
T zend results Al Choreography = & «componerts
Abstractor rp— use | Hode Pool
—_ = == Manager
Scalability T
Analyzer

Figure 4.7: Framework architecture

4.5 COMPARISON WITH RELATED WORKS 23

As depicted in Figure 4.7, the architecture is organized in source packages. The three packages
presented below are part of the Rehearsal framework while the package CHOReOS middleware
contains the middleware components used by our framework.

e IDRE User Interface: this package contains the components in which the developer can
specify the test cases and also check the test results. This is achieved by using the Integrated
Development and Runtime Environment (IDRE) which is the CHOReOS choreography de-
velopment environment.

e Specification Interpreter: this package contains the components for “processing” the test
cases. This process is guided by the Test case interpreter component. For each element and
command defined in the test cases, the interpreter delegates their execution to the Chore-
ography Abstractor. For instance, when an intercept command is found by the interpreter,
the Choreography Abstractor invokes the Message Interceptor component, providing all the
needed information to intercept and store the desired message. Each assert statement present
on the test case is processed on this package; this is achieved by the Oracle component. In our
framework, the test cases are specified using the JUnit framework, thus, our oracle is based
on JUnit’s oracle.

e Execution: this package contains the components for supporting the execution of the other
framework features. The Dynamic client generator is responsible for providing the dynamic
generation of web service clients. The Message Interceptor component interacts with the
Middleware layer to intercept, collect, and store the messages. Through the Service Simulator,
services can be mocked and integrated into the choreography. To apply this integration, the
Dynamic reconfigurator and Node Pool Manager components may be invoked. Finally, the
Scalability Analyzer component supports scalability testing. Thus, through this component,
the Rehearsal framework can create, destroy, and deploy new service instances using the Node
Pool Manager component.

4.5 Comparison with related works

Regarding the related works presented in chapter 3, none of them is specific for or favors TDD
of choreographies. However, there are some points of intersection between some of these works and
our framework. The most significant similarities and differences are presented below.

4.5.1 Testing of atomic web services

Taking into account the related works for testing of atomic web services, we can highlight the
following aspects.

SoapUI. We can classify SoapUI as an internal dependency of our work. Our feature for gener-
ating clients dynamically uses SoapUI to build the Soap envelopes. Originally, SoapUI consists on
a graphical IDE for applying functional and performance testing on web services, but it is also
available as an APIL. Since the simpler version of SoapUI is Open Source (under the LGPL License),
we developed our dynamic client based on this API.

WS-TAXI. This tool provides mechanism for generating test cases automatically. This is one of our
future goals, but differently from WS-TAXI, we want to generate test cases in Java instead of XML.

TTR. Differently from TTR (Test-The-REST), our approach for testing RESTful services is not
based on XML. Our client for REST (presented in Section 4.6) is built upon the tool Test Assured’.

"http://code.google.com/p/rest-assured

4.6 COMPARISON WITH RELATED WORKS 24

As a result, the tests can be written using Java.

SOCT. For the time being, we do not intend to measure the testing coverage of web services.
Besides, such approach requires an adaptation of the traditional SOA triangle. We aim at providing
a feature that does not require this adaptation.

Audition framework and (role)CAST. Differently from these two works, the goal of our frame-
work is to assist in the development of the choreography, or in other words, we aim to apply test at
development-time. The Audition Framework and (role)CAST focus on runtime testing, also called
online testing. Since the authors of these works are also members of the CHOReOS project, as a
future work, our framework can be integrated to these works to provide also runtime testing.

Mobile agent-based framework. Our framework acts at the client side of interaction instead of
acting at the provider (server) side. A major problem of applying performance testing of web services
lies on the latency of the network. The mobile agent-based framework overcomes this problem by
executing the tests at the server side. Thus, it is possible to measure the response time of the service
discounting the time spent with communication. Since our long term goals are also to apply perfor-
mance and QoS testing, this related work can be our starting point to support these kinds of testing.

4.5.2 Testing of Choreographies

Regarding the works related to testing of web services choreographies, we can highlight the
following aspects:

PI4SOA and CDLChecker. Although these tools are related to choreography testing, they only
provide mechanisms for validating the message exchange using simulation. We are interested in
validating this exchange invoking the choreography operations under testing. CDLChecker could
be used during the choreography specification (design time) to validate the choreography models.
However, both the PI4SOA and CDLChecker tools are coupled to the WS-CDL language while we
are interested in testing choreographies specified in other languages, for instance, BPMN2.

BPELUnit. Since a choreography can be composed of distributed orchestrations (see Section 2.3.3),
our work is related to the fundamentals of BPELUnit. More specifically, we want to explore more
and then to adapt the architecture in layers for BPEL testing proposed. The tests for BPELUnit
must be written in XML, and this tool is available as an Eclipse plugin. We aim to develop a frame-
work that provides features for writing tests in Java. Moreover, we do not have the intention to be
restricted to BPEL, we aims to explore choreographies and orchestration defined in other languages.

A online testing application |[GGvD10]. Differently from the goal of this online application,
we aim at providing mechanisms for testing at development-time, defined as offline testing by the
authors of this related work. Besides, another major difference lies on the technologies used. The
online tests proposed can only be applied on web services that are developed and executed under
the OSGI SOA framework. We aim at supporting the testing of traditional Soap and REST services.
In spite of these differences, we are also interested on keeping the controllability and isolation of
testing. To achieve that, we aim at providing the service mocking feature for minimizing or avoiding
side effects on the internal state of the services under testing.

4.6 PARTIAL RESULTS 25

4.6 Partial results

The features presented in Section 4.3 are under development®. Particularly, the feature for the
dynamic generation of web service clients is in a more advanced stage. In the section below, we
present in detail what have been developed for this feature.

4.6.1 Dynamic generation of web service clients

As described previously, our dynamic client supports Soap/WSDL and RESTful services. We

present here both approaches.

Soap/WSDL support

Our solution for Soap/WSDL services uses SoapUl (see Section 3.1.1) to build and retrieve
Soap envelopes automatically. Figure 4.8 presents the execution process of our dynamic client for
interacting with Soap/WSDL web services.

XML
E Service A

1. request(‘operation”, “value”) 2. Soap request
- = .n. ST T -
- 4. response <<ltem>> Framework #ﬁ 3. Soap response

XML

Figure 4.8: Ezxecution process for interacting with Soap/WSDL services.

In the first step of Figure 4.8, the developer, using the object WSClient, specifies what operation
must be invoked. This object represents our dynamic client and its public interface is described in
Figure 4.9.

WSClient

soonstructor:AWSClent wadl @ String)
+getS0OLC) : String

l +request operationMame : String, arguments String...) fem
+request] operationkame : String, requestRoot : kem) kem

Item

+zetContent content : String) woid
+getContent() : String
+getContentAsint() : Intecger
+getContentAsDoublel) : double
+getilamel]) : String
+oetaliOoperationtames() : List=String= = — — — — |sconstructors+temimpl; taghame ; String)

+getChildrent) : List=tem:= N =y " . . .
+getChildrenCounty) : Integer constructar Ix] 1 String, tagattributes : Hashhap=String, String=)

+getChild(name : String 1 tem
+getChildasList] name : String) List=fem=
+yetTagdttributes() | Map=S5tring, String=
+oetTagattribute! key @ String 10 String
+acddChild(] item : ftem) woid

Figure 4.9: Public interface of WSClient and related entities.

To request the desired operation, the developer invokes the method request providing the op-
eration name and its arguments. This method supports as parameters, primitive types (e.g., int,
String, and so on), or complex ones, which are represented by the object Item.

Within a Soap envelope, complex types are represented in XML. To avoid XML manipulation,
we developed the [tem object. This object consists of a recursive data structure for representing
complex types that can be used as an operation parameter or for representing an operation response.
Thus, during the testing of a service composition, Item objects representing a response received from
a service can be directly used as input for the testing of other operation.

Figures 4.10 and 4.11 illustrate a Soap envelope containing complex types and its equivalent
Item object. As can be seen in these figures, the developer does not have to specify the operation
and parameters namespace information. In the example, we do not have to specify the namespace
“ns” associated to the operation “getProductByName”.

®Repository: https://github.com/choreos/choreos v-v

https://github.com/choreos/choreos_v-v

4.6 PARTIAL RESULTS 26

<soapenv:Envelope xmins:soapenv="...">
<soapenv:Body>
<ns:getProductByNameResponse>
<ns:return xsi:type="ax26:1tem">

Item response = service.request("getProductByName",
"Soccer cleat");

<barcode>153</barcode> Item item = response.getChild("return");
<brand>adidas</brand>

<description>A cleat</description> item.getName(); => “return”

<name>Soccer cleat</name> item.getTagAttribute("xsi:type"); => “ax26:ltem”
<price>90.0</price> . I " — cqEan
<sport>soccer</sport> item.getChild("barcode").getContent(); => “153

item.getChild("brand").getContent(); => “adidas”
item.getChild("description").getContent(); => A cleat
item.getChild("name").getContent(); => Soccer cleat

</ns:return>
</ns:getProductByNameResponse>

</soapenv:Body> item.getChild("price").getContentAsDouble(); => 90.0
</soapenv:Envelope> item.getChild("sport").getContent(); => "soccer"
Figure 4.10: Soap response envelope Figure 4.11: Equivalent Item

In the WSClient execution process (Figure 4.8), once the operation request has been defined,
our framework creates and submits the corresponding Soap-request envelope to the service under
testing (step 2). Then, in step 3, the framework collects the Soap-response envelope. Finally, in the
step 4, the framework composes and returns the Item object representing the response.

To assess the WSClient object, we compared an unit test case written using it with the same
test case written in our prototype, using JAX-WS. Figures 4.12 and 4.13 illustrate this comparison.

@Test @TbelSt J h
. . . . i ublic void shouldFindFlight() throws Exception
public void shouldFindFlight() throws Exception{ P String destination = --hg,ma(&--; ption{
String destination = "Milan"; string date = "12-21-2010";
String date ="12-21-2010"; String wsdl = "http://choreos.ime.usp.br:53111/airline?wsdl";

WSClient airline = new WSClient(wsdl);
Item response = airline.request("getFlight", destination, date);
Item flight = response.getChild("return");

FlightResult flight = stub.getFlight(destination, date);

assertEquals("3153", flight.getld());
assertEquals("Milan", flight.getDestination()); assertEquals("3153", flight.getChild("id").getContent());
assertEquals("12-21-2010", flight.getDate()); assertEquals("Milan", flight.getChild("destination").getContent());

nhQ.a ! Fl . . assertEquals("12-21-2010", flight.getChild("date").getContent());
assertEquals("09:15", flight.getTime()); assertEquals("09:15", flight.getChild("time").getContent());

Figure 4.12: Software Prototype (test case A) Figure 4.13: WSClient (test case B)

As can be seen in these figures, for the code snippet depicted, the test case written for the
prototype is four lines smaller than the test case written using WSClient. However, the test case
A uses the object FlightResult which is a stub object generated by the JAX-WS. Since the service
under testing provides other operations, other stub objects have been created and must be known
for testing those operations. Thus, in this case, the code needed for testing is longer than the code
presented. The test case B is independent of stub generations. The code snippet presented is only
what the developer needs for testing this operation. Besides, if the service WSDL has changed, we
just have to adjust the operation and parameters names, if needed.

REST support

Our solution for testing RESTful services is based on TestAssured (see Section 3.1.1). Figure 4.14
presents the execution process of our dynamic client for interacting with REST services.

In step 1, to interact with the desired resource, the developer provides the service location and
the desired operation (GET, POST, PUT or DELETE) that must be applied over the resource.
This process is performed using RSClient, our dynamic client implementation for RESTful services.
As depicted in Figure 4.14, the framework invokes the resource desired by the developer (step 2),
collects the response, and then, presents the results to the developer, on steps 3 and 4, respectively.

The response of a REST service is not defined by a standard such as WSDL for Soap web
services, the framework just returns the response content received from the service under testing.
As discussed in Section 2.3.2, the response can be represented in different data formats such as

4.6

PARTIAL RESULTS

Resource A

-

1. operation + resourceA 2. operation
> ¢ _ >
4. result <<String>> Framework #ﬁ 3. result

Figure 4.14: Workflow for interacting with REST services.

27

HTML, text, XML, JSON, PDF, and JPG. Due to this fact, in the current version of this feature,
the validation of the response content is up to the developer.

The most important advantages provided by RSClient are: (i) to abstract the communication
issues for the developer and (ii) to provide a simple interface for applying the CRUD operation over
the resources. Figure 4.15 presents the public interface of RSClient.

RSClient

woonstructors+REClert] baseUR]: String, basePath @ String, port © int 3
+zetRequestUr()

+get(path : String, parameters | Map=String, String= 1 String

+oet(path : Strincg) ;0 String

+piost path © String, parameters @ Map=String, String= 1 String

+piostl] path : String 3 String

+put(path - String, parameters | Map=String, String= 1 String

+put(path String)0 String

+delete path : String, parameters | Map=String, Strincg=) String
+delete path : String) String

Figure 4.15: Public interface of RSClient

Figure 4.16 presents an example of application of GET, POST, and DELETE operations using
RSClient. In this example, first, the developer specifies the service information such as its URI,
base path, and also the port where the service is available. This information is specified inside the
RSClient constructor method. Then, the POST operation is applied to create a new book (lines 20-
24). To validate the resource creation, the GET operation is applied over the resource just created
(“book”). As a result, a JSON object is retrieved, and then validated. This is illustrated in lines
26-29. Finally, we want to delete the resource created. This is achieved by prodiving the book id
in the DELETE operation. To validate the result, we apply a GET operation by providing the id
of the book deleted and this operation must return an empty String. The lines 31-34 illustrate the
DELETE operation. Notice that the developer just have to specify the test cases, all the HTTP
communication issues are performed automatically.

15
16
17
18
19
20

@Test
public void shouldAddAndDeleteAtBook(){

RSClient client = new RSClient("http://choreos.ime.usp.br", "/rest/bookstore", 53111);
Map<String, String> parameters = new HashMap<String, String>();
parameters.put("title", "The Hobbit");

parameters.put("author", "J. R. R. Tolkien");

String id = client.post("/addBook", parameters);

String retrievedBook = client.get("/book/" + id);
String expectedBook = "{\"title\":\"The Hobbit\",\"author\":\"J. R. R. Tolkien\"}";

assertEquals(expectedBook, retrievedBook);
String deletedBook = client.delete("/book/" + id);

assertEquals(deletedBook, expectedBook);
assertEquals("", client.get("/book/" +id));

Figure 4.16: RSClient: Example of usage

Chapter 5

Work plan

In this chapter, we present the workplan for developing the missing features and to validate
the framework. We also present our schedule for achieving that in the next months of the Master’s
course.

5.1 Missing features

As described in the previously chapter, only the feature for dynamic generation of clients has
been developed completely. In the next months, we intend to continue the development of the other
four main features. We described our starting points for continuing the development of each feature
below.

Abstraction of choreography: to implement this feature, we are working in two directions. First,
the group is engaged on discovering the needed BPMN2 elements for describing a choreography.
A choreography diagram is considered a collaboration diagram in BPMN2, thus many different
BPMN2 elements can used for specifying a choreography. When this subset of BPMN2 elements
have been defined, we will represent the elements of diagrams as Java Objects. The validation of
these Java objects can be done using an XML parsing tool. Depending on the needed validation,
the BPMN2 parsing tool EasyBPMN! from the PetalsLink company can be used. Since this tool
is Open-Source and PetalsLink are also a member of the CHOReOS project, we are focusing our
efforts to use this tool to meet our demands.

Message interceptor: this functionality will be developed in collaboration with the project mem-
bers responsible for the CHOReOS middleware. The message interceptor will be a component of
the proposed middleware; this functionality will be used for other purposes besides V&V activities.
Through this component, we will be able to intercept and store messages exchanged between two
services, all messages that arrive to a service or leave a service. The testing framework interacts
with this component by retrieving and validating the messages stored. Our effort will be directly
for the implementation of both systems, the middleware side and the test framework side.

Service mocking: since our goals are to provide an object that simulates the real service, we
will first investigate how to mock a web service. Our starting point is SoapUI, which provides a
feature for mocking web services. We will also study existing tools for mocking objects (not exactly
web services) such as Mockito? and EasyMock?. Since these tools are commonly used in the TDD
community, we aim to provide an interface similar to these tools to facilitate the adoption of our tool.

'EasyBPMN: http://research.petalslink.org/display/easybpmn /EasyBPMN-+Overview
*Mockito: http://mockito.org
SBasyMock: http://easymock.org

28

http://research.petalslink.org/display/easybpmn/EasyBPMN+Overview

9.2 THE FRAMEWORK VALIDATION 29

Scalability testing support: this feature is being developed by other student of our research
group.

We also intend to develop a methodology proposal to demonstrate how Rehearsal can support
the TDD of choreographies. This methodology aims at clarifying how and in what phases of the
development the above features can be used to support the TDD of choreography. However, this
methodology is a topic too large for the scope of the current work and we just aim at introducing
it.

5.2 The framework validation

To validate our framework, we intend to apply quantitative and qualitative assessments. For the
quantitative assessments we aim to evaluate aspects such as:

e performance (time overhead): In this case, execution time will be our metric. We intend
to select complex test cases that can be executed without the framework. After selected, these
test cases will be executed by using our framework, and by using other tools or even executed
manually. The system under test (choreography, orchestration, and/or service) will be the
same for all executions. Then, the execution time results will be compared, analyzed, and
presented.

e testability achieved: Given a choreography, we want to quantify how much of this chore-
ography can be tested using our framework. For achieving that, we will count the number of
elements of the choreography under testing that can be covered by applying unit, integration,
and acceptance tests. We will just consider important elements that will be selected following
a specific criterion (e.g., be related to the logic flow of choreography, trigger an action, and
S0 on).

e test case verbosity: The goal is to evaluate the complexity (verbosity) of test cases written
using the framework. It will be achieved by measuring the number of lines of each test case
written for assessing the mains flows of a choreography. If possible, this experiment will be
applied to other tools, and then, the results will be compared and analyzed.

We are also interested in applying qualitative assessments to evaluate the following aspects:

e novel functionalities provided: we intend to present in details the novel functionalities
provided, by checking their absence in other tools. For the best of our knowledge, there is
no software tool for applying test integration similar to our approach. However, there are
software tools for applying unit and acceptance tests (see Section 3.1.1). This comparison will
be made on these tools.

e differences from the existing functionalities: similar to the purpose of the experiment
above, we intend to compare the advantages and disadvantages of our framework features
from existing ones belonging to other tools.

Finally, we want to apply a qualitative assessment involving users, more specifically, Computer
Science students. The goal is to evaluate the user acceptance and also the framework effectiveness.
To achieve that, a group of users would receive initial and basic training on our testing framework.
Possibly, a preparatory short course about choreographies and web services would also be performed.
After this training stage, the following experiments can be performed:

e testing of an existing choreography: in this experiment, the users, using our framework,
must write and execute tests for a choreography we have developed. The choreography under
testing will have previously inserted bugs. During the experiment, we will measure the time
spent for writing each test case. At the end, the users will be invited to answer a simple

SCHEDULE 30

questionnaire. Through this questionnaire, we want to identify the main problems and diffi-
culties faced, how hard was to test the choreography, number of bugs found, and also the user
satisfaction.

e developing a choreography using TDD: in this experiment, the users will be divided
in two groups. Both groups must develop the same requirements of choreography using our
framework, but one group will use TDD while the other do not. At the end, we will analyze
the test cases written as well as the choreography developed. In addition, the users will be
invited to answer another questionnaire. Through this questionnaire, we want to identify the
main problems and difficulties faced, how hard was to develop the choreography, and also the
user satisfaction.

All of the quantitative and qualitative assessments presented in this section are only our starting
points. They can be, and probably will be changed during the project. The deep elaboration of
assessments as well as their execution is one of our future activities, as can be checked in the next
section. Specially for the assessment involving users, the main idea is still in a conception state.

5.3 Schedule

Regarding the remaining activities described in the sections above, we propose the following
schedule for the next months.

Sep | Oct | Nov | Dec | Jan | Feb | Mar | May | Jun

A testbed choreography
IAbstract the choreography
[Message interceptor

Service mocking

[TDD methodology proposal
IAssessment pre-paration
IAssessment execution

[Thesis writing

Thesis preparation and defense
ICorrections

[Paper writing for the ITC2012 *
* |EEE International Testing Conference 2012

Figure 5.1: Timetable

Bibliography

[AMO4]

[BAP11]

[BBEMO09]

[BBMP09)

[BBRW09)

[BDAP09)

[BDO]

[Bec03]
[Ber07]

[BHM*04]

[BLK*11a]

[BLK*11b]

Alain Abran and James W. Moore. Guide to the Software Engineering Body of Knowl-
edge - SWEBOK. IEEE Press, 2005 edition, 2004. 4

Antonia Bertolino, Guglielmo De Angelis, and Andre Polini. (role) CAST: A Framework
for On-line Service Testing. In 7th Internation Conference on Web Information Systems
and Technologies, WEBIST, Noordwijkerhout, Netherlands, 2011. 6, 12

Cesare Bartolini, Antonia Bertolino, Sebastian Elbaum, and Eda Marchetti. Whitening
SOA testing. In Proceedings of the the 7th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium on The foundations of software
engineering, ESEC/FSE 09, pages 161-170, New York, NY, USA, 2009. ACM.

Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Andrea Polini. WS-TAXI:
A WSDL-based Testing Tool for Web Services. Software Testing, Verification, and
Validation, 2008 International Conference on, 0:326-335, 2009. 10, 11

Adam Barker, Paolo Besana, David Robertson, and Jon B. Weissman. The benefits
of service choreography for data-intensive computing. In Proceedings of the 7th in-

ternational workshop on Challenges of large applications in distributed environments,
CLADE 09, pages 1-10, New York, NY, USA, 2009. ACM. 1, 8

Antonia Bertolino, Guglielmo De Angelis, and Andrea Polini. On-line validation of
service oriented systems in the European Project TAS3. In Proceedings of the 2009
ICSE Workshop on Principles of Engineering Service Oriented Systems, PESOS 09,
Washington, DC, USA, 2009. IEEE Computer Society. 12

Alistair Barros, Marlon Dumas, and Phillipa Oaks. A Critical Overview of the Web
Services Choreography Description Language (WS-CDL). BPTrends Newsletter. 8

Kent Beck. Test-driven development: by ezample. Addison-Wesley, Boston, 2003. 2, 6

Antonia Bertolino. Software Testing Research: Achievements, Challenges, Dreams. In
2007 Future of Software Engineering, FOSE 07, pages 85-103, Washington, DC, USA,
2007. IEEE Computer Society. 6

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris
Ferris, and David Orchard. W3C Note NOTE-ws-arch-20040211. Available on:
<www.w3.org/ TR /ws-arch/wsa.pdf>, 2004. 7

Felipe M. Besson, Pedro M.B. Leal, Fabio Kon, Alfredo Goldman, and Dejan Miloji-
cic. Supporting Test-Driven Development of Web Service Choreographies. In The 5th
International Open Cirrus Summait, Moscow, Russia, 2011. 19, 21

Felipe M. Besson, Pedro M.B. Leal, Fabio Kon, Alfredo Goldman, and Dejan Miloji-
cic. Towards automated testing of web service choreographies. In Proceeding of the
6th international workshop on Automation of software test, AST ’11, pages 109-110,
Waikiki, Honolulu, HI, USA, 2011. ACM. 19

31

BIBLIOGRAPHY 32

[BMSO07] Antonio Bucchiarone, Hernan Melgratti, and Francesco Severoni. Testing Service Com-
position. In 8th Argentine Symposium on Software Engineering (ASSE’07), Mar del
Plata, Argentina, 2007. 2, 9

[BPaRGO09] Paolo Besana, Vivek Patkar, D avid Robertson, and David Glasspool. Sharing Chore-
ographies in OpenKnowledge: A Novel Approach to Interoperability. Journal of Soft-
ware, 4:833-842, 2009. 1

[CDP09] Gerardo Canfora and Massimiliano Di Penta. Service-Oriented Architectures Testing:
A Survey. In Software Engineering, volume 5413 of Lecture Notes in Computer Science,
pages 78-105. Springer Berlin / Heidelberg, 2009. 2, 9

[CHO11] CHOReOS. CHOReOS Perspective on the FI and initial conceptual model (D 1.2).
http://choreos.eu/bin/Download /Deliverables, 2011. 8

[CK09] Sujit K. Chakrabarti and Prashant Kumar. Test-the-REST: An Approach to Testing
RESTful Web-Services. In Future Computing, Service Computation, Cognitive, Adap-
tive, Content, Patterns, 2009. COMPUTATIONWORLD ’09. Computation World,
pages 302 -308, nov. 2009. 11

[Del97] Marcio Eduardo Delamaro. Mutagdao de interface: Um critério de adequagdo interpro-
cedimental para o teste de integra¢do. PhD thesis, University of Sao Paulo — Physics
Institute, SP, Brazil, 1997. 5

[DMJ07| Méarcio Eduardo Delamaro, José Carlos Maldonado, and Mario Jino. Introdugdo ao
teste de software. Elsevier Editora Ltda, 2007. 5

|[Erl07] Thomas Erl. SOA Principles of Service Design (The Prentice Hall Service-Oriented
Computing Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2007. 1, 8

|Evil0] Eviware. SoapUI, Web Services Functional Testing Tool. Available on:
<http:/ /http:/ /www.soapui.org/>, 2010. 10

[Fow07] Martin Fowler. Mocks Aren'’t Stubs. Available on:
http://martinfowler.com/articles/mocksArentStubs.html, 2007. 6

[Fowll] Martin Fowler. Test-Driven Development. Available on:
http://www.martinfowler.com /bliki/TestDrivenDevelopment.html, 2011. 6

[GGvD10] Michaela Greiler, Hans-Gerhard Gross, and Arie van Deursen. Evaluation of online
testing for services: a case study. In Proceedings of the 2nd International Workshop on
Principles of Engineering Service-Oriented Systems, PESOS 10, pages 36-42. ACM,
2010. 6, 14, 24

[Hew09] Eben Hewitt. Java Soa Cookbook. O’Reilly Media, 1 edition, March 2009. 1, 7

[HP11] HP. Loadrunner. Available on: <http://www8.hp.com/us/en/software/software-
product.html?compURI=tcm:245-935779>, 2011. 13

[IBM11] IBM. Aglets. Available on: <http://www.trl.ibm.com/aglets>, 2011. 13

|Liu09] Henry H. Liu. Software Performance and Scalability: A Quantitative Approach (Quan-
titative Software Engineering Series). Wiley, 2009. 5

[Mes07] Gerard Meszaros. zUnit Test Patterns: Refactoring Test Code. Addison-Wesley, May
2007. 3,4,5,6

[MLO6]

[Mye04]

[Ngu01]
[Pel03]

[PGFT11]

[Pi410]

[Pre01]

[PZL08]

[RPIT11]

[RRO7|
[Rt05]

[SMAO5|

[VIG+10]

[WZZ+10]

[Zhall]

[ZPX*+10]

BIBLIOGRAPHY 33

Philip Mayer and Daniel Liibke. Towards a BPEL unit testing framework. In Proceed-
ings of the 2006 workshop on Testing, analysis, and verification of web services and
applications, TAV-WEB 06, pages 33-42, New York, NY, USA, 2006. ACM. 14

Glenford J. Myers. The Art of Software Testing, Second Edition. Wiley, 2 edition, June
2004. 5

Hung Q. Nguyen. Test Applications on the Web. Wiley Computer Publishing, 2001. 5

Chris Peltz. Web Services Orchestration and Choreography. Computer, 36:46-52,
October 2003. 1, 8, 9, 17

Marcos Palacios, José Garcia-Fanjul, and Javier Tuya. Testing in Service Oriented
Architectures with dynamic binding: A mapping study. Information and Software
Technology, pages 171-189, March 2011. 7, 13

Pi4 Technologies Foundation. Pi calculus for SOA. Available on:
http://sourceforge.net /projects/pidsoa/, 2010. 2, 13

Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill
Higher Education, 5th edition, 2001. 5

Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs.
“big" web services: making the right architectural decision. In Proceeding of the 17th
wnternational conference on World Wide Web, WWW 08, pages 805-814, New York,
NY, USA, 2008. ACM. 8

Hazlifah Mohd Rusli, Mazidah Puteh, Suhaimi Ibrahim, and Sayed Gholam Hassan
Tabatabaei. A comparative evaluation of state-of-the-art web service composition test-

ing approaches. In Proceeding of the 6th international workshop on Automation of
software test, AST ’11, pages 29-35, New York, NY, USA, 2011. ACM. 13

Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly, 2007. 8

Stephen Ross-talbot. Orchestration and Choreography: Standards, Tools and Tech-
nologies for Distributed Workflows. In NETTAB Workshop - Workflows management:
new abilities for the biological information overflow, 2005. 8

Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine for
C. In Proceedings of the 10th European software engineering conference held jointly with
18th ACM SIGSOFT international symposium on Foundations of software engineering,
ESEC/FSE-13, pages 263-272, New York, NY, USA, 2005. ACM. 14

Hugues Vincent, Valérie Issarny, Nikolaos Georgantas, Emilio Francesquini, Alfredo
Goldman, and Fabio Kon. CHOReOS: scaling choreographies for the internet of the
future. In Middleware ’10 Posters and Demos Track, Middleware Posters 10, pages
8:1-8:3, New York, NY, USA, 2010. ACM. 18

Zheng Wang, Lei Zhou, Yongxin Zhao, Jing Ping, Hao Xiao, Geguang Pu, and Huibiao
Zhu. Web Services Choreography Validation. Service Oriented Computing Applications,
4, December 2010. 2, 13

Jia Zhang. A Mobile Agent-Based Tool Supporting Web Services Testing. Wireless
Personal Communications, 56:147-172, 2011. 13

Lei Zhou, Jing Ping, Hao Xiao, Zheng Wang, Geguang Pu, and Zuohua Ding. Au-
tomatically testing web services choreography with assertions. In Proceedings of the
12th international conference on Formal engineering methods and software engineer-
ing, ICFEM’10, pages 138-154. Springer-Verlag, 2010. 2, 14

	Introduction
	Motivation
	Goals
	Document organization

	Conceptualization and terminology
	Verification and Validation (V&V)
	Software testing
	Testing strategies
	Testing techniques
	Performance and scalability testing
	Online vs Offline testing
	Test double
	Test-Driven Development (TDD)

	Web service compositions
	SOA roles and operations
	Web services
	Orchestration vs. Choreography

	Alternatives for web service composition testing

	Related work
	Testing of atomic web services
	Service client
	Services registry
	Service provider

	Testing of web services choreographies
	Before enactment
	After enactment

	Rehearsal: Our testing framework
	Supported testing strategies
	Unit testing
	Integration testing
	Acceptance testing

	Choreography development process
	Framework features
	Dynamic generation of web service clients
	Abstraction of choreography
	Message interceptor
	Service mocking
	Scalability testing support

	Architecture
	Comparison with related works
	Testing of atomic web services
	Testing of Choreographies

	Partial results
	Dynamic generation of web service clients

	Work plan
	Missing features
	The framework validation
	Schedule

	Bibliography

